Normalized defining polynomial
\( x^{20} - 8 x^{19} + 44 x^{18} - 188 x^{17} + 649 x^{16} - 1890 x^{15} + 4683 x^{14} - 9996 x^{13} + 18417 x^{12} - 28542 x^{11} + 36198 x^{10} - 38148 x^{9} + 35494 x^{8} - 28955 x^{7} + 20732 x^{6} - 11735 x^{5} + 6277 x^{4} - 2889 x^{3} + 1269 x^{2} - 243 x + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1312418339203244062978515625=5^{10}\cdot 103^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} + \frac{4}{9} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} - \frac{1}{3} a^{7} + \frac{2}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{11} - \frac{1}{9} a^{7} - \frac{1}{3} a^{5} - \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{12} - \frac{1}{9} a^{8} - \frac{1}{3} a^{6} - \frac{1}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{27} a^{17} + \frac{1}{27} a^{14} - \frac{2}{27} a^{12} - \frac{1}{27} a^{11} - \frac{1}{27} a^{10} - \frac{1}{9} a^{9} + \frac{2}{27} a^{8} + \frac{10}{27} a^{7} + \frac{7}{27} a^{6} - \frac{11}{27} a^{5} + \frac{4}{27} a^{4} + \frac{11}{27} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{1485} a^{18} - \frac{17}{1485} a^{17} + \frac{16}{495} a^{16} + \frac{43}{1485} a^{15} + \frac{8}{297} a^{14} - \frac{7}{135} a^{13} + \frac{7}{495} a^{12} - \frac{197}{1485} a^{11} + \frac{1}{135} a^{10} - \frac{223}{1485} a^{9} - \frac{58}{495} a^{8} - \frac{4}{27} a^{7} + \frac{52}{297} a^{6} - \frac{1}{27} a^{5} + \frac{194}{495} a^{4} - \frac{8}{135} a^{3} - \frac{1}{165} a^{2} + \frac{17}{55} a + \frac{17}{55}$, $\frac{1}{4764968302960004903951500665} a^{19} + \frac{497959991202048731097472}{4764968302960004903951500665} a^{18} + \frac{10685384723002440200356049}{952993660592000980790300133} a^{17} + \frac{21768020425027973124687848}{952993660592000980790300133} a^{16} - \frac{180749445060417092515140038}{4764968302960004903951500665} a^{15} - \frac{7156824997263161803506497}{433178936632727718541045515} a^{14} - \frac{7114512609910052284529443}{529440922551111655994611185} a^{13} + \frac{657777652416520188211906457}{4764968302960004903951500665} a^{12} - \frac{4631160020643041472800077}{433178936632727718541045515} a^{11} + \frac{793167020272765816290684376}{4764968302960004903951500665} a^{10} - \frac{1576304758288039245531179}{29968354106666697509128935} a^{9} + \frac{15658467525064454680680449}{433178936632727718541045515} a^{8} - \frac{17620279613024326336376261}{35296061503407443732974079} a^{7} - \frac{4187803846260059600638597}{9626198591838393745356567} a^{6} - \frac{1777800677905217399838411173}{4764968302960004903951500665} a^{5} + \frac{4884710005299393000366031}{28878595775515181236069701} a^{4} - \frac{585135765237964230494626321}{4764968302960004903951500665} a^{3} + \frac{467604341989358696339711966}{1588322767653334967983833555} a^{2} - \frac{7684199518914606759095311}{35296061503407443732974079} a - \frac{3899211501484296540843157}{16043664319730656242260945}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 126437.428056 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-103}) \), \(\Q(\sqrt{-515}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-103})\), 5.1.10609.1 x5, 10.0.11592740743.1, 10.0.36227314821875.1 x5, 10.2.351721503125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $103$ | 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |