Normalized defining polynomial
\( x^{20} - 2 x^{19} - 17 x^{18} + 48 x^{17} + 94 x^{16} - 402 x^{15} + 137 x^{14} + 1337 x^{13} - 2082 x^{12} - 23 x^{11} + 3747 x^{10} - 5361 x^{9} + 5490 x^{8} - 5271 x^{7} + 5114 x^{6} - 4061 x^{5} + 2436 x^{4} - 1100 x^{3} + 415 x^{2} - 125 x + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(131153132009996266143798828125=5^{15}\cdot 73^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{14} - \frac{3}{20} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{5} a^{10} - \frac{1}{4} a^{9} - \frac{9}{20} a^{8} - \frac{1}{4} a^{7} + \frac{3}{10} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{10} a^{3} - \frac{1}{5} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{20} a^{15} - \frac{1}{5} a^{13} + \frac{1}{20} a^{11} + \frac{3}{20} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{20} a^{7} + \frac{3}{20} a^{6} - \frac{1}{4} a^{5} + \frac{2}{5} a^{4} - \frac{7}{20} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{20} a^{16} - \frac{1}{10} a^{13} + \frac{1}{20} a^{12} + \frac{3}{20} a^{11} - \frac{1}{10} a^{9} - \frac{1}{4} a^{8} - \frac{7}{20} a^{7} + \frac{9}{20} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{5} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{20} a^{17} - \frac{1}{4} a^{13} + \frac{3}{20} a^{12} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{9}{20} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{7}{20} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{20} a^{18} - \frac{1}{10} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{5} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{7}{20} a^{3} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{3223630932786236148968200} a^{19} - \frac{53646644089040189969941}{3223630932786236148968200} a^{18} - \frac{11909521677784311290319}{1611815466393118074484100} a^{17} + \frac{1521825442458969221923}{80590773319655903724205} a^{16} - \frac{13060636935865832668353}{1611815466393118074484100} a^{15} - \frac{10907023327312681687349}{1611815466393118074484100} a^{14} - \frac{333265722440596690436581}{3223630932786236148968200} a^{13} - \frac{129468342200769916787167}{1611815466393118074484100} a^{12} + \frac{284857687577187493769647}{1611815466393118074484100} a^{11} + \frac{389621218125655679436921}{3223630932786236148968200} a^{10} - \frac{246928245003477235823251}{1611815466393118074484100} a^{9} - \frac{355851290791106106996973}{3223630932786236148968200} a^{8} - \frac{13730303681691827744073}{3223630932786236148968200} a^{7} + \frac{183627898192003545243562}{402953866598279518621025} a^{6} - \frac{71011758821067935917337}{161181546639311807448410} a^{5} - \frac{1183311056329360798404211}{3223630932786236148968200} a^{4} - \frac{7109690878070219570781}{128945237311449445958728} a^{3} + \frac{77375621945640487630143}{644726186557247229793640} a^{2} + \frac{13558521267518352644473}{64472618655724722979364} a - \frac{56375402073294721421203}{128945237311449445958728}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1811157.39147 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.666125.1, 5.1.666125.1 x5, 10.2.2218612578125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.666125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $73$ | 73.4.2.2 | $x^{4} - 73 x^{2} + 58619$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 73.4.2.2 | $x^{4} - 73 x^{2} + 58619$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 73.4.2.2 | $x^{4} - 73 x^{2} + 58619$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 73.4.2.2 | $x^{4} - 73 x^{2} + 58619$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 73.4.2.2 | $x^{4} - 73 x^{2} + 58619$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |