Normalized defining polynomial
\( x^{20} - 4 x^{19} + 10 x^{18} - 8 x^{17} + 1159 x^{16} - 3948 x^{15} + 30386 x^{14} - 82176 x^{13} + 37504 x^{12} + 767904 x^{11} + 2083316 x^{10} - 21392148 x^{9} + 510298027 x^{8} - 1079824928 x^{7} + 9530828238 x^{6} - 14978990136 x^{5} + 53053915879 x^{4} - 51654328704 x^{3} + 238384484610 x^{2} + 29552104068 x + 429330790631 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12930852715467736934189031479041360155115520000000000=2^{55}\cdot 5^{10}\cdot 61^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $403.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4880=2^{4}\cdot 5\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4880}(1,·)$, $\chi_{4880}(3779,·)$, $\chi_{4880}(2779,·)$, $\chi_{4880}(2441,·)$, $\chi_{4880}(1099,·)$, $\chi_{4880}(81,·)$, $\chi_{4880}(339,·)$, $\chi_{4880}(4121,·)$, $\chi_{4880}(2521,·)$, $\chi_{4880}(1179,·)$, $\chi_{4880}(3059,·)$, $\chi_{4880}(3619,·)$, $\chi_{4880}(1681,·)$, $\chi_{4880}(1961,·)$, $\chi_{4880}(619,·)$, $\chi_{4880}(4401,·)$, $\chi_{4880}(3539,·)$, $\chi_{4880}(241,·)$, $\chi_{4880}(2681,·)$, $\chi_{4880}(1339,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{9} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{9} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{299135} a^{16} + \frac{10653}{299135} a^{15} + \frac{23764}{299135} a^{14} + \frac{32}{2063} a^{13} - \frac{17837}{299135} a^{12} + \frac{23974}{299135} a^{11} + \frac{3268}{59827} a^{10} + \frac{57468}{299135} a^{9} - \frac{117076}{299135} a^{8} + \frac{127968}{299135} a^{7} + \frac{24148}{59827} a^{6} - \frac{52979}{299135} a^{5} + \frac{32832}{299135} a^{4} + \frac{60469}{299135} a^{3} + \frac{23021}{59827} a^{2} + \frac{106564}{299135} a - \frac{10598}{59827}$, $\frac{1}{14059345} a^{17} - \frac{19}{14059345} a^{16} + \frac{1202788}{14059345} a^{15} - \frac{8239}{96961} a^{14} - \frac{896566}{14059345} a^{13} - \frac{1065962}{14059345} a^{12} - \frac{911341}{14059345} a^{11} - \frac{346096}{14059345} a^{10} - \frac{983031}{2811869} a^{9} + \frac{2349571}{14059345} a^{8} - \frac{899886}{14059345} a^{7} - \frac{198713}{2811869} a^{6} - \frac{1017316}{14059345} a^{5} - \frac{215031}{14059345} a^{4} + \frac{531304}{2811869} a^{3} + \frac{1150854}{14059345} a^{2} - \frac{6872833}{14059345} a - \frac{330}{2063}$, $\frac{1}{550616356459272170769795538015} a^{18} + \frac{15675890406847527213549}{550616356459272170769795538015} a^{17} - \frac{756154484210009876036433}{550616356459272170769795538015} a^{16} + \frac{19027163098335320470913157867}{550616356459272170769795538015} a^{15} - \frac{9416592323781827231140278438}{550616356459272170769795538015} a^{14} + \frac{35668889397849612658311435408}{550616356459272170769795538015} a^{13} - \frac{7642119842904814852854857710}{110123271291854434153959107603} a^{12} - \frac{44274505133404289675106553941}{550616356459272170769795538015} a^{11} + \frac{5865496775079916560558333747}{550616356459272170769795538015} a^{10} - \frac{1803259261544028139824373253}{550616356459272170769795538015} a^{9} + \frac{248880846460092615634848369718}{550616356459272170769795538015} a^{8} + \frac{31678882997016690935419724775}{110123271291854434153959107603} a^{7} + \frac{221501624641190288997933210122}{550616356459272170769795538015} a^{6} + \frac{19514411672744648412813183582}{110123271291854434153959107603} a^{5} - \frac{95317189091188797151018409732}{550616356459272170769795538015} a^{4} - \frac{166418466304911444214224334161}{550616356459272170769795538015} a^{3} - \frac{19866986154364390319072268288}{550616356459272170769795538015} a^{2} + \frac{33784777123565286891931052796}{550616356459272170769795538015} a - \frac{3720256682012615925143712811}{11715241626793024909995649745}$, $\frac{1}{222812559804031963980676184637589901697888556424530749168112145} a^{19} - \frac{146578481296867897107101687236223}{222812559804031963980676184637589901697888556424530749168112145} a^{18} - \frac{5914663118413252619720252874941096286244823046453787302}{222812559804031963980676184637589901697888556424530749168112145} a^{17} + \frac{320834587616047228100579287732500605715919058624954270741}{222812559804031963980676184637589901697888556424530749168112145} a^{16} - \frac{21951634708259902712795868425076275935232637481849794710091777}{222812559804031963980676184637589901697888556424530749168112145} a^{15} + \frac{8734374979042976925607854843332032705728845360930286231231952}{222812559804031963980676184637589901697888556424530749168112145} a^{14} - \frac{2332755086865349363237036537364624642054254644934328765091917}{44562511960806392796135236927517980339577711284906149833622429} a^{13} + \frac{116349686353251076938921024229831880726215844707913806945964}{7683191717380412551057799470261720748203053669811405143728005} a^{12} + \frac{18397712528997851330375512321679408127774058978039060389700958}{222812559804031963980676184637589901697888556424530749168112145} a^{11} - \frac{644870494384799993699422871968746283285568663867240070444743}{7683191717380412551057799470261720748203053669811405143728005} a^{10} - \frac{69658725169748725691889736641429695496941838401926665459425193}{222812559804031963980676184637589901697888556424530749168112145} a^{9} + \frac{102291109357190008253457002985248174747123478086886861778290873}{222812559804031963980676184637589901697888556424530749168112145} a^{8} - \frac{28419547684563183340542453492595940702807583423989178875094}{948138552357582825449685892074850645522930027338428719864307} a^{7} - \frac{76668545317181095776333062318294322024599523019979125504276836}{222812559804031963980676184637589901697888556424530749168112145} a^{6} + \frac{90346859147014572021154942599464605904265982439992043672462033}{222812559804031963980676184637589901697888556424530749168112145} a^{5} + \frac{365278892265756893641585676063532675854602628942344786393519}{1536638343476082510211559894052344149640610733962281028745601} a^{4} + \frac{25207588106141979192461467003440315907912293185466533395723093}{222812559804031963980676184637589901697888556424530749168112145} a^{3} + \frac{76891593590117832608023313057587038917386671868407762901081344}{222812559804031963980676184637589901697888556424530749168112145} a^{2} + \frac{23547053638325763962612130217473193843870145455352248303912031}{222812559804031963980676184637589901697888556424530749168112145} a + \frac{369191854855232254912327819580933619461000251923012086827481}{948138552357582825449685892074850645522930027338428719864307}$
Class group and class number
$C_{1156287922}$, which has order $1156287922$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 421902771.2761871 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.51200.2, 5.5.13845841.1, 10.10.6281865232294903808.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{20}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||