Normalized defining polynomial
\( x^{20} + 90 x^{18} + 5885 x^{16} + 310760 x^{14} + 12753090 x^{12} + 404258124 x^{10} + 9761928930 x^{8} + 171855099720 x^{6} + 2056587912445 x^{4} + 14887410527530 x^{2} + 49402019223649 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1290236096287360000000000000000000000000000000000=2^{40}\cdot 5^{34}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $254.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3400=2^{3}\cdot 5^{2}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3400}(1,·)$, $\chi_{3400}(69,·)$, $\chi_{3400}(2311,·)$, $\chi_{3400}(2379,·)$, $\chi_{3400}(271,·)$, $\chi_{3400}(1361,·)$, $\chi_{3400}(339,·)$, $\chi_{3400}(1429,·)$, $\chi_{3400}(1631,·)$, $\chi_{3400}(2721,·)$, $\chi_{3400}(1699,·)$, $\chi_{3400}(2789,·)$, $\chi_{3400}(681,·)$, $\chi_{3400}(749,·)$, $\chi_{3400}(2991,·)$, $\chi_{3400}(3059,·)$, $\chi_{3400}(951,·)$, $\chi_{3400}(2041,·)$, $\chi_{3400}(1019,·)$, $\chi_{3400}(2109,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{5} - \frac{1}{4} a$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{3} + \frac{1}{8} a$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{4} + \frac{1}{16}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{5} + \frac{1}{16} a$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{8} - \frac{1}{16} a^{6} + \frac{1}{16} a^{4} + \frac{1}{32} a^{2} - \frac{1}{32}$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} + \frac{1}{64} a^{9} - \frac{1}{64} a^{8} + \frac{1}{32} a^{7} - \frac{1}{32} a^{6} + \frac{1}{32} a^{5} - \frac{1}{32} a^{4} - \frac{3}{64} a^{3} + \frac{3}{64} a^{2} + \frac{29}{64} a - \frac{29}{64}$, $\frac{1}{448} a^{12} + \frac{1}{112} a^{10} + \frac{9}{448} a^{8} + \frac{3}{56} a^{6} - \frac{37}{448} a^{4} - \frac{23}{112} a^{2} - \frac{101}{448}$, $\frac{1}{896} a^{13} - \frac{1}{896} a^{12} + \frac{1}{224} a^{11} - \frac{1}{224} a^{10} - \frac{19}{896} a^{9} + \frac{19}{896} a^{8} + \frac{3}{112} a^{7} - \frac{3}{112} a^{6} - \frac{93}{896} a^{5} + \frac{93}{896} a^{4} + \frac{33}{224} a^{3} - \frac{33}{224} a^{2} + \frac{207}{896} a - \frac{207}{896}$, $\frac{1}{896} a^{14} - \frac{1}{896} a^{12} - \frac{11}{896} a^{10} - \frac{3}{128} a^{8} - \frac{45}{896} a^{6} - \frac{19}{896} a^{4} - \frac{201}{896} a^{2} + \frac{169}{896}$, $\frac{1}{1792} a^{15} - \frac{1}{1792} a^{14} - \frac{1}{1792} a^{13} + \frac{1}{1792} a^{12} - \frac{11}{1792} a^{11} + \frac{11}{1792} a^{10} + \frac{5}{256} a^{9} - \frac{5}{256} a^{8} + \frac{67}{1792} a^{7} - \frac{67}{1792} a^{6} + \frac{205}{1792} a^{5} - \frac{205}{1792} a^{4} + \frac{135}{1792} a^{3} - \frac{135}{1792} a^{2} - \frac{559}{1792} a + \frac{559}{1792}$, $\frac{1}{12544} a^{16} - \frac{1}{6272} a^{14} + \frac{5}{6272} a^{12} + \frac{9}{896} a^{10} + \frac{25}{3136} a^{8} - \frac{251}{6272} a^{6} - \frac{181}{6272} a^{4} + \frac{219}{896} a^{2} - \frac{4485}{12544}$, $\frac{1}{25088} a^{17} - \frac{1}{25088} a^{16} - \frac{1}{12544} a^{15} + \frac{1}{12544} a^{14} + \frac{5}{12544} a^{13} - \frac{5}{12544} a^{12} + \frac{9}{1792} a^{11} - \frac{9}{1792} a^{10} + \frac{25}{6272} a^{9} - \frac{25}{6272} a^{8} + \frac{533}{12544} a^{7} - \frac{533}{12544} a^{6} + \frac{603}{12544} a^{5} - \frac{603}{12544} a^{4} + \frac{107}{1792} a^{3} - \frac{107}{1792} a^{2} - \frac{6053}{25088} a + \frac{6053}{25088}$, $\frac{1}{5056430569631971160403299020898636288} a^{18} - \frac{13643581151720912187594817852703}{5056430569631971160403299020898636288} a^{16} - \frac{166487295045168306376678127764555}{316026910601998197525206188806164768} a^{14} - \frac{17139085514255011034822619220033}{90293403029142342150058911087475648} a^{12} + \frac{37895518678504277539248744588339101}{2528215284815985580201649510449318144} a^{10} + \frac{37422550774808510163242110844032729}{2528215284815985580201649510449318144} a^{8} + \frac{31030808506790435488474017227497107}{632053821203996395050412377612329536} a^{6} - \frac{1367328482548010860586369458971385}{11286675378642792768757363885934456} a^{4} + \frac{529202002860392940087057014382023645}{5056430569631971160403299020898636288} a^{2} + \frac{264300242901835736507921740280151859}{722347224233138737200471288699805184}$, $\frac{1}{71079832236515483040733540972664692472210432} a^{19} - \frac{1}{10112861139263942320806598041797272576} a^{18} - \frac{373371297080069481363383468772876753223}{71079832236515483040733540972664692472210432} a^{17} + \frac{13643581151720912187594817852703}{10112861139263942320806598041797272576} a^{16} + \frac{74896238406790986701261595959467885203}{2538565437018410108597626463309453302578944} a^{15} - \frac{744885242149675870587957974683587}{2528215284815985580201649510449318144} a^{14} + \frac{8182950462392642418114926924562617767489}{17769958059128870760183385243166173118052608} a^{13} + \frac{235825945647131321511741022117467}{361173612116569368600235644349902592} a^{12} + \frac{60145870379308499656036913647893001860831}{35539916118257741520366770486332346236105216} a^{11} + \frac{72149566263262951956135553299521845}{5056430569631971160403299020898636288} a^{10} + \frac{465232028312954765393986501518278880399871}{35539916118257741520366770486332346236105216} a^{9} + \frac{100839222613565701254035596758664357}{5056430569631971160403299020898636288} a^{8} - \frac{584117626148149986060547067927577059618335}{17769958059128870760183385243166173118052608} a^{7} + \frac{80432659641784387728613684604928293}{2528215284815985580201649510449318144} a^{6} - \frac{745464220852512069218171460424839061944715}{17769958059128870760183385243166173118052608} a^{5} + \frac{36993338817164771227539095119347235}{361173612116569368600235644349902592} a^{4} + \frac{14288472128799153161438714113774376773024937}{71079832236515483040733540972664692472210432} a^{3} - \frac{2397146778025775143316400737504176113}{10112861139263942320806598041797272576} a^{2} + \frac{17415097750358552959410115626135030739948145}{71079832236515483040733540972664692472210432} a - \frac{107092978699311122943087029011779079}{1444694448466277474400942577399610368}$
Class group and class number
$C_{2}\times C_{122604504}$, which has order $245209008$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19344397.966990974 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-170}) \), \(\Q(\sqrt{-17}) \), \(\Q(\sqrt{10}, \sqrt{-17})\), 5.5.390625.1, 10.10.25000000000000000.1, 10.0.35496425000000000000000.1, 10.0.221852656250000000000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||