Normalized defining polynomial
\( x^{20} + 20 x^{18} - 20 x^{17} + 1005 x^{16} + 116 x^{15} + 31670 x^{14} + 21440 x^{13} + 813850 x^{12} + 768720 x^{11} + 15681528 x^{10} + 12226060 x^{9} + 229742855 x^{8} + 132916040 x^{7} + 2477895450 x^{6} + 960854012 x^{5} + 18523918365 x^{4} + 5197770460 x^{3} + 89131121320 x^{2} + 19495942660 x + 208310963449 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1290236096287360000000000000000000000000000000000=2^{40}\cdot 5^{34}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $254.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3400=2^{3}\cdot 5^{2}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3400}(1,·)$, $\chi_{3400}(3331,·)$, $\chi_{3400}(69,·)$, $\chi_{3400}(3399,·)$, $\chi_{3400}(1291,·)$, $\chi_{3400}(1359,·)$, $\chi_{3400}(1361,·)$, $\chi_{3400}(1429,·)$, $\chi_{3400}(2651,·)$, $\chi_{3400}(2719,·)$, $\chi_{3400}(2721,·)$, $\chi_{3400}(611,·)$, $\chi_{3400}(2789,·)$, $\chi_{3400}(679,·)$, $\chi_{3400}(681,·)$, $\chi_{3400}(749,·)$, $\chi_{3400}(1971,·)$, $\chi_{3400}(2039,·)$, $\chi_{3400}(2041,·)$, $\chi_{3400}(2109,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{25} a^{10} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{8}{25} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{7}{25}$, $\frac{1}{25} a^{11} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{8}{25} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{7}{25} a$, $\frac{1}{175} a^{12} + \frac{1}{175} a^{11} - \frac{2}{175} a^{10} - \frac{3}{7} a^{9} + \frac{17}{35} a^{8} - \frac{82}{175} a^{7} - \frac{87}{175} a^{6} + \frac{54}{175} a^{5} - \frac{17}{35} a^{3} + \frac{62}{175} a^{2} + \frac{2}{175} a + \frac{41}{175}$, $\frac{1}{175} a^{13} - \frac{3}{175} a^{11} - \frac{3}{175} a^{10} - \frac{3}{35} a^{9} + \frac{8}{175} a^{8} - \frac{1}{35} a^{7} - \frac{34}{175} a^{6} - \frac{19}{175} a^{5} - \frac{17}{35} a^{4} - \frac{4}{25} a^{3} - \frac{12}{35} a^{2} + \frac{39}{175} a - \frac{76}{175}$, $\frac{1}{175} a^{14} - \frac{6}{25} a^{9} - \frac{13}{35} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{25} a^{4} - \frac{4}{35} a^{2} + \frac{2}{5} a - \frac{16}{35}$, $\frac{1}{1925} a^{15} - \frac{3}{1925} a^{13} - \frac{4}{1925} a^{12} + \frac{19}{1925} a^{11} - \frac{4}{1925} a^{10} + \frac{7}{55} a^{9} - \frac{37}{275} a^{8} - \frac{21}{275} a^{7} - \frac{628}{1925} a^{6} + \frac{46}{175} a^{5} - \frac{2}{7} a^{4} + \frac{789}{1925} a^{3} + \frac{142}{1925} a^{2} + \frac{208}{1925} a - \frac{314}{1925}$, $\frac{1}{1925} a^{16} - \frac{3}{1925} a^{14} - \frac{4}{1925} a^{13} - \frac{3}{1925} a^{12} - \frac{26}{1925} a^{11} - \frac{19}{1925} a^{10} - \frac{534}{1925} a^{9} + \frac{678}{1925} a^{8} + \frac{58}{275} a^{7} - \frac{1}{7} a^{6} - \frac{32}{175} a^{5} - \frac{366}{1925} a^{4} - \frac{683}{1925} a^{3} - \frac{771}{1925} a^{2} + \frac{797}{1925} a + \frac{72}{175}$, $\frac{1}{1925} a^{17} - \frac{4}{1925} a^{14} - \frac{1}{1925} a^{13} - \frac{1}{385} a^{12} + \frac{38}{1925} a^{11} - \frac{29}{1925} a^{10} + \frac{698}{1925} a^{9} - \frac{943}{1925} a^{8} - \frac{12}{1925} a^{7} - \frac{13}{275} a^{6} - \frac{47}{1925} a^{5} - \frac{958}{1925} a^{4} + \frac{23}{1925} a^{3} - \frac{86}{1925} a^{2} - \frac{57}{275} a + \frac{37}{1925}$, $\frac{1}{853710479935580575} a^{18} - \frac{130917120310464}{853710479935580575} a^{17} + \frac{33350810894152}{170742095987116115} a^{16} - \frac{31110022863776}{170742095987116115} a^{15} + \frac{242555338604659}{121958639990797225} a^{14} + \frac{1435313272380308}{853710479935580575} a^{13} + \frac{31719088995362}{17422662855828175} a^{12} - \frac{535780752583012}{853710479935580575} a^{11} + \frac{16491353279082959}{853710479935580575} a^{10} - \frac{346128805008949}{1583878441438925} a^{9} + \frac{151257943733161217}{853710479935580575} a^{8} + \frac{36902219578626112}{77610043630507325} a^{7} + \frac{14452989145723004}{77610043630507325} a^{6} + \frac{29780896796824767}{77610043630507325} a^{5} - \frac{18661532751828269}{77610043630507325} a^{4} - \frac{32104514642065746}{170742095987116115} a^{3} - \frac{20392433534011668}{170742095987116115} a^{2} + \frac{69705248346221386}{853710479935580575} a - \frac{396105215879905437}{853710479935580575}$, $\frac{1}{8678530342864570245312849318820645112295832022960575} a^{19} + \frac{331602983561527223522577551687749}{1735706068572914049062569863764129022459166404592115} a^{18} - \frac{144981651443716417583243664307557125573590974582}{8678530342864570245312849318820645112295832022960575} a^{17} + \frac{2215755694262937125375109425643252299215952627678}{8678530342864570245312849318820645112295832022960575} a^{16} - \frac{1679324574749803453390933286948768416943414147431}{8678530342864570245312849318820645112295832022960575} a^{15} - \frac{20396857452772526866869465936144126002245993423933}{8678530342864570245312849318820645112295832022960575} a^{14} - \frac{463535372436923561732961240900631048474118898716}{347141213714582809812513972752825804491833280918423} a^{13} + \frac{3116346846495385739273396183820253970640991883962}{8678530342864570245312849318820645112295832022960575} a^{12} - \frac{141034014908249092343414498425221391795804288526381}{8678530342864570245312849318820645112295832022960575} a^{11} + \frac{7899833194072770488135265783027807080654265574759}{1735706068572914049062569863764129022459166404592115} a^{10} + \frac{1954284763384406290678489616257660304524911965240724}{8678530342864570245312849318820645112295832022960575} a^{9} + \frac{47442330222459700656374141481487955735568186523497}{347141213714582809812513972752825804491833280918423} a^{8} + \frac{590049293222741042670337806675082781871291484469801}{1735706068572914049062569863764129022459166404592115} a^{7} - \frac{4097907473555200354644292444021086704951275240828149}{8678530342864570245312849318820645112295832022960575} a^{6} + \frac{194682170138844806008444660348957264533416506623932}{8678530342864570245312849318820645112295832022960575} a^{5} + \frac{2406223135811428197877707008366906737410631867349983}{8678530342864570245312849318820645112295832022960575} a^{4} + \frac{342868619035523401112290421557233510816732340140378}{1735706068572914049062569863764129022459166404592115} a^{3} + \frac{787650177661158772995031281623852099621239091265331}{8678530342864570245312849318820645112295832022960575} a^{2} - \frac{320614682479734885623853888431725876473919687148862}{1735706068572914049062569863764129022459166404592115} a - \frac{2613273424380878365901651784282764165843040435831839}{8678530342864570245312849318820645112295832022960575}$
Class group and class number
$C_{10}\times C_{41764040}$, which has order $417640400$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19344397.966990974 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-34}) \), \(\Q(\sqrt{-85}) \), \(\Q(\sqrt{10}, \sqrt{-34})\), 5.5.390625.1, 10.10.25000000000000000.1, 10.0.7099285000000000000000.1, 10.0.1109263281250000000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.17.29 | $x^{10} - 10 x^{8} + 35$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.29 | $x^{10} - 10 x^{8} + 35$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| 17 | Data not computed | ||||||