Normalized defining polynomial
\( x^{20} + 245 x^{16} - 8 x^{15} + 2080 x^{13} + 8270 x^{12} + 720 x^{11} - 170832 x^{10} - 340200 x^{9} - 30590 x^{8} - 680 x^{7} + 25490700 x^{6} - 383528 x^{5} + 7225 x^{4} + 999109080 x^{3} + 693760140 x^{2} + 63672480 x + 13948557461 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1290236096287360000000000000000000000=2^{28}\cdot 5^{22}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{12} a^{16} - \frac{1}{12} a^{15} + \frac{1}{12} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{12} a^{10} + \frac{5}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{12} a^{7} - \frac{5}{12} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{5}{12} a^{2} - \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{12} a^{17} + \frac{1}{12} a^{14} - \frac{1}{4} a^{12} + \frac{1}{6} a^{11} + \frac{1}{12} a^{10} - \frac{1}{3} a^{9} + \frac{5}{12} a^{8} - \frac{1}{2} a^{7} + \frac{1}{12} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{3} a^{3} + \frac{1}{12} a^{2} + \frac{1}{12} a - \frac{1}{12}$, $\frac{1}{12} a^{18} + \frac{1}{12} a^{15} - \frac{1}{4} a^{13} + \frac{1}{6} a^{12} + \frac{1}{12} a^{11} + \frac{1}{6} a^{10} + \frac{5}{12} a^{9} + \frac{1}{12} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{3} a^{4} + \frac{1}{12} a^{3} - \frac{5}{12} a^{2} - \frac{1}{12} a - \frac{1}{2}$, $\frac{1}{45071857900243400502669735791509542192480970128700232331386500184235449294943076870631604} a^{19} - \frac{958235213302119380429807559496510018477612007665580557517107079023171345037945631045185}{45071857900243400502669735791509542192480970128700232331386500184235449294943076870631604} a^{18} - \frac{126676556177333451286463577702760864096025436241935905334516365034248261953865453978435}{15023952633414466834223245263836514064160323376233410777128833394745149764981025623543868} a^{17} - \frac{57364129079123847347236822671203506643666723450592732790021223540576491338240248160830}{3755988158353616708555811315959128516040080844058352694282208348686287441245256405885967} a^{16} - \frac{563099781380167789819771962791974461320350122916240197679938236677913738960723177492560}{11267964475060850125667433947877385548120242532175058082846625046058862323735769217657901} a^{15} - \frac{1511379360679976028366305862722133098470947933886819697714075799114434555478151472073043}{45071857900243400502669735791509542192480970128700232331386500184235449294943076870631604} a^{14} - \frac{2101350559486703522571161377319903454333363993198057002950266185793442518991261254708569}{22535928950121700251334867895754771096240485064350116165693250092117724647471538435315802} a^{13} + \frac{1758111866729885157442462231166942091949749902649060688778876798461281045986438906581599}{15023952633414466834223245263836514064160323376233410777128833394745149764981025623543868} a^{12} - \frac{31473295998749201590808027880324492894482566702546276071386523273561418092684055141208}{3755988158353616708555811315959128516040080844058352694282208348686287441245256405885967} a^{11} - \frac{3707971906956616237894634515533428739976495613475520323904123563538539852414101239289353}{45071857900243400502669735791509542192480970128700232331386500184235449294943076870631604} a^{10} - \frac{3031843800660731961813634404045148398632910532907990073191428708071359356391095549748739}{7511976316707233417111622631918257032080161688116705388564416697372574882490512811771934} a^{9} - \frac{19927509061223726055461798314427449050794585876809234025324191699560495484770709438707719}{45071857900243400502669735791509542192480970128700232331386500184235449294943076870631604} a^{8} - \frac{3387554810088928261055888408374070225294786359830701347842802455270829938492490732530049}{11267964475060850125667433947877385548120242532175058082846625046058862323735769217657901} a^{7} - \frac{3859049273505123969045507045304619479047694006748954654748093785112289715367550439107693}{45071857900243400502669735791509542192480970128700232331386500184235449294943076870631604} a^{6} + \frac{7850848954235933555194792009675531359322707537352169918920467830971067884908532594159627}{22535928950121700251334867895754771096240485064350116165693250092117724647471538435315802} a^{5} - \frac{6399775036154262165678247071469852068174738527526266852660048450389592228264227457448869}{15023952633414466834223245263836514064160323376233410777128833394745149764981025623543868} a^{4} + \frac{9586539840946129957609320138386221090700768690830731337042953642803716868265411063732983}{45071857900243400502669735791509542192480970128700232331386500184235449294943076870631604} a^{3} - \frac{6645329489727797413761978464831161232994619584071972995093299851498966168500540917061321}{22535928950121700251334867895754771096240485064350116165693250092117724647471538435315802} a^{2} - \frac{3792489569949026861069750303820566132446057413394056092233478617292129691866486740335107}{15023952633414466834223245263836514064160323376233410777128833394745149764981025623543868} a + \frac{16336090501507292830684658949417760750195658463339860386387153694226041829918796388018485}{45071857900243400502669735791509542192480970128700232331386500184235449294943076870631604}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-17}) \), \(\Q(\sqrt{-85}) \), \(\Q(\sqrt{5}, \sqrt{-17})\), 5.1.50000.1, 10.2.12500000000.1, 10.0.227177120000000000.1, 10.0.1135885600000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |