Normalized defining polynomial
\( x^{20} - 69 x^{18} + 782 x^{16} + 17986 x^{14} - 286189 x^{12} + 3126919 x^{10} + 160397561 x^{8} + 79474844 x^{6} - 3637093477 x^{4} + 69306541424 x^{2} + 606618891407 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12846961306316291046734327469906326168010752=2^{20}\cdot 11^{16}\cdot 23^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $143.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{23} a^{4}$, $\frac{1}{23} a^{5}$, $\frac{1}{23} a^{6}$, $\frac{1}{23} a^{7}$, $\frac{1}{529} a^{8}$, $\frac{1}{529} a^{9}$, $\frac{1}{529} a^{10}$, $\frac{1}{529} a^{11}$, $\frac{1}{12167} a^{12}$, $\frac{1}{12167} a^{13}$, $\frac{1}{12167} a^{14}$, $\frac{1}{12167} a^{15}$, $\frac{1}{279841} a^{16}$, $\frac{1}{279841} a^{17}$, $\frac{1}{50665415279246700329259190803617} a^{18} - \frac{3127884780840376138544134}{2202844142575943492576486556679} a^{16} - \frac{20965660536367832013983481}{2202844142575943492576486556679} a^{14} + \frac{3741139398977616436483950}{95775832285910586633760285073} a^{12} + \frac{31760922878227436907110386}{95775832285910586633760285073} a^{10} - \frac{162946612505617325943092}{181050722657675967171569537} a^{8} - \frac{50907762691243949400244746}{4164166621126547244946099351} a^{6} - \frac{2009750094369503199133334}{181050722657675967171569537} a^{4} + \frac{10491823948566502144368922}{181050722657675967171569537} a^{2} + \frac{616933739960506638375989}{7871770550333737703111719}$, $\frac{1}{15554282490728737001082571576710419} a^{19} - \frac{33334331659270127536538299}{29403180511774550096564407517411} a^{17} + \frac{20437765999781016458373374200}{676273151770814652220981372900453} a^{15} + \frac{523277995721004304841857404}{29403180511774550096564407517411} a^{13} + \frac{5101181157293154517711057422}{29403180511774550096564407517411} a^{11} - \frac{1003462631980013886791879429}{1278399152685850004198452500757} a^{9} + \frac{15519454385868889227354735436}{1278399152685850004198452500757} a^{7} + \frac{580501270630327086831133872}{55582571855906521921671847859} a^{5} + \frac{17934513367058487252129753085}{55582571855906521921671847859} a^{3} + \frac{39975786491629195153934584}{2416633558952457474855297733} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{12}$, which has order $96$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 132268587065 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n130 |
| Character table for t20n130 is not computed |
Intermediate fields
| \(\Q(\sqrt{-23}) \), \(\Q(\zeta_{11})^+\), 10.0.1379687283212183.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |