Normalized defining polynomial
\( x^{20} + 102 x^{18} + 3793 x^{16} - 189690 x^{14} + 8216560 x^{12} - 222386744 x^{10} + 4263113739 x^{8} - 62349833294 x^{6} + 655617306707 x^{4} - 4338353882334 x^{2} + 13016444524561 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12843535723167951800917506774806325511837450240000000000=2^{40}\cdot 5^{10}\cdot 101^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $569.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4040=2^{3}\cdot 5\cdot 101\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4040}(1,·)$, $\chi_{4040}(3499,·)$, $\chi_{4040}(2309,·)$, $\chi_{4040}(2561,·)$, $\chi_{4040}(1801,·)$, $\chi_{4040}(3339,·)$, $\chi_{4040}(3231,·)$, $\chi_{4040}(2829,·)$, $\chi_{4040}(589,·)$, $\chi_{4040}(3521,·)$, $\chi_{4040}(1431,·)$, $\chi_{4040}(219,·)$, $\chi_{4040}(1349,·)$, $\chi_{4040}(2721,·)$, $\chi_{4040}(2019,·)$, $\chi_{4040}(1509,·)$, $\chi_{4040}(3751,·)$, $\chi_{4040}(2539,·)$, $\chi_{4040}(671,·)$, $\chi_{4040}(511,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{137523676} a^{16} + \frac{7336279}{68761838} a^{14} - \frac{1}{4} a^{13} + \frac{22803819}{137523676} a^{12} - \frac{1}{4} a^{11} - \frac{4680747}{34380919} a^{10} - \frac{1}{2} a^{9} + \frac{2378729}{137523676} a^{8} + \frac{1}{4} a^{7} + \frac{15787049}{68761838} a^{6} - \frac{1}{4} a^{5} - \frac{8405422}{34380919} a^{4} - \frac{1}{4} a^{3} - \frac{1148149}{3354236} a^{2} - \frac{1}{2} a - \frac{59381203}{137523676}$, $\frac{1}{137523676} a^{17} + \frac{7336279}{68761838} a^{15} - \frac{1}{4} a^{14} + \frac{22803819}{137523676} a^{13} - \frac{1}{4} a^{12} - \frac{4680747}{34380919} a^{11} + \frac{2378729}{137523676} a^{9} - \frac{1}{4} a^{8} + \frac{15787049}{68761838} a^{7} - \frac{1}{4} a^{6} - \frac{8405422}{34380919} a^{5} + \frac{1}{4} a^{4} - \frac{1148149}{3354236} a^{3} - \frac{59381203}{137523676} a - \frac{1}{2}$, $\frac{1}{1067549391481957607785176221215692111004172956} a^{18} - \frac{515386841611800551214622839730772064}{266887347870489401946294055303923027751043239} a^{16} + \frac{50518849284868819700173205355722841395728138}{266887347870489401946294055303923027751043239} a^{14} + \frac{33299479415562347898103451011292731232470082}{266887347870489401946294055303923027751043239} a^{12} - \frac{1}{4} a^{11} + \frac{4758707172714518693978010790253803956990077}{26037790036145307506955517590626636853760316} a^{10} + \frac{1}{4} a^{9} - \frac{93418996857087788210682452662121638403942936}{266887347870489401946294055303923027751043239} a^{8} - \frac{129836873756378189901895318648070356260873497}{266887347870489401946294055303923027751043239} a^{6} + \frac{1}{4} a^{5} + \frac{2930779384558632484407704730078203259923573}{15699255757087611879193767959054295750061367} a^{4} + \frac{1}{4} a^{3} - \frac{311566374318296601369220826263228394569518915}{1067549391481957607785176221215692111004172956} a^{2} + \frac{1}{4} a + \frac{83799900721585341079010827808933084997960795}{1067549391481957607785176221215692111004172956}$, $\frac{1}{3851537788619742598053200111364831684536296320018436} a^{19} - \frac{528592901529470911134667833979425147091747}{226561046389396623414894124197931275560958607059908} a^{17} - \frac{12806231217786399282207657374815077742967324517159}{226561046389396623414894124197931275560958607059908} a^{15} + \frac{35204883194325166002552026156602429258065592131608}{962884447154935649513300027841207921134074080004609} a^{13} - \frac{130996360171064247861938007493195770107995497190989}{962884447154935649513300027841207921134074080004609} a^{11} - \frac{1}{4} a^{10} + \frac{1745662361677409499501747795914623124580297011792755}{3851537788619742598053200111364831684536296320018436} a^{9} + \frac{1}{4} a^{8} - \frac{1187031785372557995528250803497981522888504662221173}{3851537788619742598053200111364831684536296320018436} a^{7} - \frac{109999956341431506544083018062933349831202544352407}{1925768894309871299026600055682415842268148160009218} a^{5} + \frac{1}{4} a^{4} - \frac{1501149628976013488962608995744784601521777041843871}{3851537788619742598053200111364831684536296320018436} a^{3} + \frac{1}{4} a^{2} + \frac{206550531101738024379382828792435849824082807776281}{3851537788619742598053200111364831684536296320018436} a + \frac{1}{4}$
Class group and class number
$C_{11}\times C_{154}\times C_{770308}$, which has order $1304901752$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8119542085.512349 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 101 | Data not computed | ||||||