Normalized defining polynomial
\( x^{20} + 85 x^{18} + 3135 x^{16} - 4 x^{15} + 65780 x^{14} + 130 x^{13} + 867255 x^{12} + 9510 x^{11} + 7484049 x^{10} + 141990 x^{9} + 42616025 x^{8} + 651530 x^{7} + 157291620 x^{6} - 898430 x^{5} + 359925375 x^{4} - 11630730 x^{3} + 471698245 x^{2} - 14132000 x + 292051855 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(128066919840750156250000000000000000=2^{16}\cdot 5^{22}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} + \frac{1}{7} a^{15} - \frac{3}{14} a^{13} + \frac{3}{14} a^{12} - \frac{3}{14} a^{11} - \frac{3}{14} a^{10} - \frac{3}{7} a^{9} + \frac{5}{14} a^{8} + \frac{5}{14} a^{7} + \frac{1}{7} a^{6} + \frac{5}{14} a^{5} + \frac{3}{14} a^{4} + \frac{3}{14} a^{3} + \frac{1}{14} a^{2} + \frac{3}{14} a + \frac{3}{7}$, $\frac{1}{13949321056260329000405502589745549650602011844947385996058017186} a^{19} + \frac{63981186351611159524897841492156810972496088807914773438856979}{1992760150894332714343643227106507092943144549278197999436859598} a^{18} + \frac{2662852328105233518758691858076834978176824934388492243490791331}{13949321056260329000405502589745549650602011844947385996058017186} a^{17} + \frac{2671914373327815724953552840015219458159259966519992175074925707}{13949321056260329000405502589745549650602011844947385996058017186} a^{16} + \frac{2777582463659816774420369506122595796490149324020002401065860779}{13949321056260329000405502589745549650602011844947385996058017186} a^{15} - \frac{221274286548361046292199829406470745930576045560581230705647753}{13949321056260329000405502589745549650602011844947385996058017186} a^{14} + \frac{197353851626454700652436252725609333103014514120284679455167292}{2324886842710054833400917098290924941767001974157897666009669531} a^{13} - \frac{1704695278294748580234698584158142399197265388894641731915823585}{6974660528130164500202751294872774825301005922473692998029008593} a^{12} - \frac{930773116540685855178983774253589428551816765772980001007821917}{13949321056260329000405502589745549650602011844947385996058017186} a^{11} - \frac{98123651908523947974246017321587483798728908757488586710008061}{13949321056260329000405502589745549650602011844947385996058017186} a^{10} + \frac{4273348961608180893921501134966756258756230529317396833837370909}{13949321056260329000405502589745549650602011844947385996058017186} a^{9} + \frac{2062032783600002714438681098490314659515043071998647696143101994}{6974660528130164500202751294872774825301005922473692998029008593} a^{8} - \frac{279941362876318227961409936902445871536744067268795417998232926}{774962280903351611133639032763641647255667324719299222003223177} a^{7} + \frac{1125883426404309860650180223552738881736416273883841836159152912}{6974660528130164500202751294872774825301005922473692998029008593} a^{6} - \frac{3304701900217632503485843984915006674747908577172813759724312519}{6974660528130164500202751294872774825301005922473692998029008593} a^{5} - \frac{340913380609371902422746167170305031248393406919478635413420823}{1549924561806703222267278065527283294511334649438598444006446354} a^{4} - \frac{1121081234359878572290818461364451919890385258667609507760383184}{2324886842710054833400917098290924941767001974157897666009669531} a^{3} + \frac{176567687466332933409188172364888265620635107523651016831386413}{774962280903351611133639032763641647255667324719299222003223177} a^{2} - \frac{4644183531506566003172493155555915304987392253396882655130519321}{13949321056260329000405502589745549650602011844947385996058017186} a - \frac{1506517368334575565343048374981904054705667147450920064717286772}{6974660528130164500202751294872774825301005922473692998029008593}$
Class group and class number
$C_{30}$, which has order $30$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 131820690.41331159 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{-155}) \), \(\Q(\sqrt{5}, \sqrt{-31})\), 5.1.50000.1, 10.2.12500000000.1, 10.0.71572877500000000.2, 10.0.357864387500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $31$ | 31.10.5.2 | $x^{10} - 923521 x^{2} + 286291510$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 31.10.5.2 | $x^{10} - 923521 x^{2} + 286291510$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |