Normalized defining polynomial
\( x^{20} - 25 x^{18} + 330 x^{16} - 2850 x^{14} + 17685 x^{12} - 79625 x^{10} + 134800 x^{8} + 448000 x^{6} + 204800 x^{4} - 8192000 x^{2} + 26214400 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1271938450811187656250000000000000000=2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{20} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{80} a^{12} - \frac{1}{80} a^{10} - \frac{1}{8} a^{8} + \frac{1}{8} a^{6} - \frac{3}{16} a^{4} + \frac{7}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{320} a^{13} + \frac{7}{320} a^{11} + \frac{1}{32} a^{9} + \frac{3}{32} a^{7} + \frac{17}{64} a^{5} - \frac{21}{64} a^{3} + \frac{1}{4} a$, $\frac{1}{1280} a^{14} + \frac{7}{1280} a^{12} - \frac{11}{640} a^{10} + \frac{3}{128} a^{8} + \frac{17}{256} a^{6} - \frac{1}{2} a^{5} + \frac{107}{256} a^{4} - \frac{1}{2} a^{3} - \frac{1}{16} a^{2}$, $\frac{1}{10240} a^{15} - \frac{1}{2560} a^{14} - \frac{9}{10240} a^{13} + \frac{9}{2560} a^{12} - \frac{7}{1024} a^{11} - \frac{29}{1280} a^{10} - \frac{13}{1024} a^{9} + \frac{13}{256} a^{8} + \frac{49}{2048} a^{7} - \frac{49}{512} a^{6} - \frac{805}{2048} a^{5} + \frac{37}{512} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{81920} a^{16} - \frac{5}{16384} a^{14} - \frac{1}{640} a^{13} + \frac{37}{40960} a^{12} + \frac{9}{640} a^{11} - \frac{273}{40960} a^{10} + \frac{7}{64} a^{9} - \frac{1071}{16384} a^{8} - \frac{3}{64} a^{7} + \frac{3019}{16384} a^{6} - \frac{17}{128} a^{5} - \frac{379}{1024} a^{4} - \frac{59}{128} a^{3} - \frac{13}{64} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{327680} a^{17} + \frac{7}{327680} a^{15} - \frac{107}{163840} a^{13} - \frac{3441}{163840} a^{11} - \frac{5999}{65536} a^{9} + \frac{491}{65536} a^{7} - \frac{1221}{4096} a^{5} - \frac{77}{256} a^{3} - \frac{1}{2} a^{2} - \frac{7}{16} a - \frac{1}{2}$, $\frac{1}{1305824125141279047680} a^{18} + \frac{190307051709063}{1305824125141279047680} a^{16} - \frac{3481468792380399}{130582412514127904768} a^{14} - \frac{2444111659759686897}{652912062570639523840} a^{12} - \frac{1}{40} a^{11} + \frac{600230957244966801}{261164825028255809536} a^{10} - \frac{1}{8} a^{9} + \frac{27475337559435861099}{261164825028255809536} a^{8} + \frac{1112853248528954739}{16322801564265988096} a^{6} - \frac{351339661756303469}{1020175097766624256} a^{4} + \frac{1}{8} a^{3} - \frac{6156042104174163}{63760943610414016} a^{2} - \frac{3}{8} a + \frac{305719343202824}{996264743912719}$, $\frac{1}{5223296500565116190720} a^{19} + \frac{190307051709063}{5223296500565116190720} a^{17} - \frac{3481468792380399}{522329650056511619072} a^{15} - \frac{2444111659759686897}{2611648250282558095360} a^{13} - \frac{1}{160} a^{12} + \frac{68292361043288786389}{5223296500565116190720} a^{11} + \frac{1}{160} a^{10} - \frac{103107074954692043669}{1044659300113023238144} a^{9} - \frac{1}{16} a^{8} + \frac{1112853248528954739}{65291206257063952384} a^{7} - \frac{3}{16} a^{6} + \frac{1689010533776945043}{4080700391066497024} a^{5} + \frac{15}{32} a^{4} - \frac{85857221617191683}{255043774441656064} a^{3} + \frac{13}{32} a^{2} + \frac{76429835800706}{996264743912719} a$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12384758684.151869 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{65}) \), \(\Q(\sqrt{-15}, \sqrt{-39})\), 5.1.50000.1, 10.0.3037500000000.2, 10.0.225560497500000000.1, 10.2.4641162500000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.10.11.7 | $x^{10} + 5 x^{2} + 10$ | $10$ | $1$ | $11$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ |
| 5.10.11.7 | $x^{10} + 5 x^{2} + 10$ | $10$ | $1$ | $11$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |