Normalized defining polynomial
\( x^{20} + 105 x^{18} + 4815 x^{16} - 4 x^{15} + 126620 x^{14} + 170 x^{13} + 2110675 x^{12} + 14710 x^{11} + 23259353 x^{10} + 273710 x^{9} + 171185925 x^{8} + 1618410 x^{7} + 828979920 x^{6} - 2398998 x^{5} + 2529545715 x^{4} - 46929210 x^{3} + 4442944605 x^{2} - 86405200 x + 3540446599 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1271938450811187656250000000000000000=2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} - \frac{3}{14} a^{16} + \frac{3}{14} a^{15} - \frac{1}{7} a^{14} + \frac{1}{14} a^{13} - \frac{3}{14} a^{12} - \frac{1}{14} a^{11} - \frac{3}{14} a^{10} + \frac{3}{14} a^{9} - \frac{3}{14} a^{8} - \frac{3}{14} a^{7} + \frac{2}{7} a^{6} + \frac{3}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} + \frac{1}{14} a^{2} + \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{734235824885546826067692700464652279750367527357060875296008473748114} a^{19} + \frac{10077452403613906497503124441741096431939070346751007834582254916710}{367117912442773413033846350232326139875183763678530437648004236874057} a^{18} - \frac{538999350711238538709193964421779743759251274359077766758127885059}{5520570111921404707275884965899641201130582912459104325533898298858} a^{17} - \frac{942399458856344329081055810415242499602327874793008999621900278363}{38643990783449832950931194761297488407914080387213730278737288092006} a^{16} + \frac{51952639256696544776015276357868891718491476739191843537643435196748}{367117912442773413033846350232326139875183763678530437648004236874057} a^{15} - \frac{41933087033249016827050759816207594687868553088064845122720141120571}{367117912442773413033846350232326139875183763678530437648004236874057} a^{14} - \frac{144618500788005448310000576645382527204785270693411415215240159142631}{734235824885546826067692700464652279750367527357060875296008473748114} a^{13} + \frac{113966467956848379451929316274048500795702250412741783527058023396959}{734235824885546826067692700464652279750367527357060875296008473748114} a^{12} - \frac{3190540047550293031808379367519118240856783091005388881652035057002}{19321995391724916475465597380648744203957040193606865139368644046003} a^{11} + \frac{83068269938566569217236671831939629547533658552950972649682412048061}{734235824885546826067692700464652279750367527357060875296008473748114} a^{10} - \frac{26398116037714025322946857318187429622292896456763760685064416416671}{734235824885546826067692700464652279750367527357060875296008473748114} a^{9} + \frac{21288751028112588742974604373091115533783645000640248649444210318341}{104890832126506689438241814352093182821481075336722982185144067678302} a^{8} + \frac{15692175501618277245958923188626755126298039064635457162836167661283}{104890832126506689438241814352093182821481075336722982185144067678302} a^{7} + \frac{36351106377265069468711066931018249949774140602015188041072917187239}{734235824885546826067692700464652279750367527357060875296008473748114} a^{6} - \frac{94060170907791207199080205835353352244079450790931739893117948961862}{367117912442773413033846350232326139875183763678530437648004236874057} a^{5} + \frac{337672878577890778016774979063514211999970728779325447069835862005}{2760285055960702353637942482949820600565291456229552162766949149429} a^{4} - \frac{7598296588643740831987663420669984648184653948408742407531549935381}{19321995391724916475465597380648744203957040193606865139368644046003} a^{3} - \frac{234956047971729980519736806666456103820495259504552332442817203601719}{734235824885546826067692700464652279750367527357060875296008473748114} a^{2} - \frac{5899069682011644292019080212239555855265140990944478805984049648166}{19321995391724916475465597380648744203957040193606865139368644046003} a + \frac{6731101851128430898900843188867582035280892461737521491339951813960}{367117912442773413033846350232326139875183763678530437648004236874057}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-195}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-39})\), 5.1.50000.1, 10.0.1127802487500000000.1, 10.0.225560497500000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |