Normalized defining polynomial
\( x^{20} - 35 x^{18} + 555 x^{16} - 88 x^{15} - 4550 x^{14} - 1520 x^{13} + 28315 x^{12} + 19180 x^{11} - 98105 x^{10} - 166250 x^{9} + 257955 x^{8} + 450680 x^{7} - 87670 x^{6} - 1164726 x^{5} - 1070835 x^{4} + 2020440 x^{3} + 4384705 x^{2} + 3238350 x + 1118589 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1271938450811187656250000000000000000=2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} + \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} + \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{3}{8} a^{6} + \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} + \frac{1}{16} a^{8} + \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{3}{8} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{8} a + \frac{1}{16}$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{13} - \frac{1}{4} a^{11} + \frac{1}{16} a^{9} + \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{16} a$, $\frac{1}{1164512} a^{18} - \frac{14697}{1164512} a^{17} - \frac{11407}{1164512} a^{16} - \frac{2036}{36391} a^{15} - \frac{18775}{582256} a^{14} + \frac{50267}{582256} a^{13} + \frac{36161}{582256} a^{12} - \frac{4747}{36391} a^{11} + \frac{120185}{1164512} a^{10} + \frac{473827}{1164512} a^{9} - \frac{247265}{1164512} a^{8} - \frac{133281}{291128} a^{7} + \frac{16686}{36391} a^{6} - \frac{106497}{291128} a^{5} + \frac{23643}{582256} a^{4} + \frac{16277}{72782} a^{3} - \frac{191217}{1164512} a^{2} - \frac{291039}{1164512} a + \frac{570109}{1164512}$, $\frac{1}{351357377256869237602857214348070695155734890887860384} a^{19} - \frac{30969764623095638403806486685958458462381757615}{175678688628434618801428607174035347577867445443930192} a^{18} + \frac{1146575822481939006583356306108181312495600575551495}{43919672157108654700357151793508836894466861360982548} a^{17} - \frac{8997766232736473307973865563948927732618141252770091}{351357377256869237602857214348070695155734890887860384} a^{16} + \frac{2047598397000206305178600375689332790031735509215965}{175678688628434618801428607174035347577867445443930192} a^{15} + \frac{547544352730661372607687019930744534609974384313376}{10979918039277163675089287948377209223616715340245637} a^{14} - \frac{133124370642646299182453296321222654214908008012847}{87839344314217309400714303587017673788933722721965096} a^{13} + \frac{9437725473723195683628549131629421706288485813778097}{175678688628434618801428607174035347577867445443930192} a^{12} + \frac{68483176761495706383994044998193677822874658921774437}{351357377256869237602857214348070695155734890887860384} a^{11} - \frac{15121767924635600591984004088279722264134936463161735}{175678688628434618801428607174035347577867445443930192} a^{10} + \frac{16410947298251559488055330410567009906604319781448621}{175678688628434618801428607174035347577867445443930192} a^{9} - \frac{72957208846741368693310738513570302468794343178746873}{351357377256869237602857214348070695155734890887860384} a^{8} - \frac{42539726659091281117266955541382487298403361076318173}{87839344314217309400714303587017673788933722721965096} a^{7} + \frac{18455034957780011383357415860998891504250419961947177}{43919672157108654700357151793508836894466861360982548} a^{6} - \frac{79153470483949680052027313656670806962185601172143773}{175678688628434618801428607174035347577867445443930192} a^{5} + \frac{31140589476831959872022874232089544491174855395627529}{175678688628434618801428607174035347577867445443930192} a^{4} + \frac{118178320522085080707000072373088141979132276506150591}{351357377256869237602857214348070695155734890887860384} a^{3} + \frac{25947032385289499011779176242573883470650387420828889}{175678688628434618801428607174035347577867445443930192} a^{2} + \frac{41285798263371457703515503687969164662804531773603433}{175678688628434618801428607174035347577867445443930192} a - \frac{108466504079499765283663483983668550926298472267086947}{351357377256869237602857214348070695155734890887860384}$
Class group and class number
$C_{2}\times C_{10}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1065874435.9547355 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-195}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{13}, \sqrt{-15})\), 5.1.50000.1, 10.0.3037500000000.2, 10.0.1127802487500000000.1, 10.2.928232500000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |