Normalized defining polynomial
\( x^{20} - 8 x^{19} + 21 x^{18} - 57 x^{16} - 166 x^{15} + 1385 x^{14} - 3815 x^{13} + 8065 x^{12} - 16253 x^{11} + 38496 x^{10} - 88398 x^{9} + 203504 x^{8} - 392889 x^{7} + 695944 x^{6} - 1005043 x^{5} + 1343738 x^{4} - 1372952 x^{3} + 1330894 x^{2} - 768615 x + 512579 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(126754505709914865311944228515625=5^{10}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(385=5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{385}(64,·)$, $\chi_{385}(1,·)$, $\chi_{385}(69,·)$, $\chi_{385}(71,·)$, $\chi_{385}(141,·)$, $\chi_{385}(146,·)$, $\chi_{385}(279,·)$, $\chi_{385}(344,·)$, $\chi_{385}(356,·)$, $\chi_{385}(34,·)$, $\chi_{385}(251,·)$, $\chi_{385}(36,·)$, $\chi_{385}(104,·)$, $\chi_{385}(169,·)$, $\chi_{385}(174,·)$, $\chi_{385}(111,·)$, $\chi_{385}(181,·)$, $\chi_{385}(246,·)$, $\chi_{385}(379,·)$, $\chi_{385}(309,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{331} a^{18} + \frac{122}{331} a^{17} + \frac{152}{331} a^{16} + \frac{100}{331} a^{15} + \frac{39}{331} a^{14} - \frac{49}{331} a^{13} - \frac{108}{331} a^{12} - \frac{159}{331} a^{11} + \frac{13}{331} a^{10} - \frac{124}{331} a^{9} - \frac{51}{331} a^{8} + \frac{113}{331} a^{7} - \frac{100}{331} a^{6} + \frac{10}{331} a^{5} + \frac{146}{331} a^{4} - \frac{79}{331} a^{3} - \frac{87}{331} a^{2} - \frac{3}{331} a - \frac{47}{331}$, $\frac{1}{281972049288892662160127749488414700450379724203057} a^{19} + \frac{281213443032968911968641456778440316350377154158}{281972049288892662160127749488414700450379724203057} a^{18} - \frac{34635945451423344263275564734385420256615672551610}{281972049288892662160127749488414700450379724203057} a^{17} + \frac{75291123344253318937575626251681865539510641473915}{281972049288892662160127749488414700450379724203057} a^{16} - \frac{110872290418637179649794640145626914355944918800185}{281972049288892662160127749488414700450379724203057} a^{15} - \frac{131400499085799544136446265647699330448235599022067}{281972049288892662160127749488414700450379724203057} a^{14} - \frac{69506941990299352543029628282726342906929329613842}{281972049288892662160127749488414700450379724203057} a^{13} - \frac{43212787382876313518344220132757987527558556024655}{281972049288892662160127749488414700450379724203057} a^{12} + \frac{139841693591235270656467794736697102416489486817890}{281972049288892662160127749488414700450379724203057} a^{11} - \frac{7124659925890979261353682940108196039468667870251}{281972049288892662160127749488414700450379724203057} a^{10} - \frac{119029735989126447340531284157136178050147598731477}{281972049288892662160127749488414700450379724203057} a^{9} - \frac{136287305793862390924203204940465853206327097369352}{281972049288892662160127749488414700450379724203057} a^{8} - \frac{86821888747271054807698948016493937357967953425220}{281972049288892662160127749488414700450379724203057} a^{7} - \frac{34935331559202675488937988060752103100687678009573}{281972049288892662160127749488414700450379724203057} a^{6} - \frac{15972829145431802251001808662560699854206766182159}{281972049288892662160127749488414700450379724203057} a^{5} - \frac{61931094602540962817276018910262571984157249994682}{281972049288892662160127749488414700450379724203057} a^{4} + \frac{140801700959187768629647234755707769172646190366}{918475730582712254593249998333598372802539818251} a^{3} + \frac{12847755937609852104433400455768716629006219940782}{281972049288892662160127749488414700450379724203057} a^{2} - \frac{132636326164832780707009889589642435564630458927882}{281972049288892662160127749488414700450379724203057} a - \frac{94429279588791837854024744361719452702291514609365}{281972049288892662160127749488414700450379724203057}$
Class group and class number
$C_{5}\times C_{55}$, which has order $275$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.11258530353021875.4, 10.0.3602729712967.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |