Normalized defining polynomial
\( x^{20} - 10 x^{19} + 135 x^{18} - 930 x^{17} + 7515 x^{16} - 40330 x^{15} + 243935 x^{14} - 1069245 x^{13} + 5230695 x^{12} - 19075585 x^{11} + 78129934 x^{10} - 237254320 x^{9} + 826391495 x^{8} - 2056465185 x^{7} + 6117729630 x^{6} - 11980324785 x^{5} + 30304858095 x^{4} - 42585255340 x^{3} + 90457721015 x^{2} - 70408087320 x + 123003528649 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12579538343290477641858160495758056640625=5^{34}\cdot 43^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $101.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1075=5^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1075}(1,·)$, $\chi_{1075}(386,·)$, $\chi_{1075}(259,·)$, $\chi_{1075}(644,·)$, $\chi_{1075}(646,·)$, $\chi_{1075}(1031,·)$, $\chi_{1075}(904,·)$, $\chi_{1075}(214,·)$, $\chi_{1075}(216,·)$, $\chi_{1075}(601,·)$, $\chi_{1075}(474,·)$, $\chi_{1075}(859,·)$, $\chi_{1075}(861,·)$, $\chi_{1075}(171,·)$, $\chi_{1075}(44,·)$, $\chi_{1075}(429,·)$, $\chi_{1075}(431,·)$, $\chi_{1075}(816,·)$, $\chi_{1075}(689,·)$, $\chi_{1075}(1074,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7} a^{17} - \frac{1}{7} a^{16} - \frac{1}{7} a^{14} - \frac{3}{7} a^{13} - \frac{2}{7} a^{12} - \frac{3}{7} a^{11} - \frac{2}{7} a^{10} + \frac{1}{7} a^{9} - \frac{3}{7} a^{8} - \frac{1}{7} a^{7} + \frac{1}{7} a^{6} - \frac{3}{7} a^{4} - \frac{3}{7} a^{3} - \frac{1}{7} a^{2} - \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{18} - \frac{1}{7} a^{16} - \frac{1}{7} a^{15} + \frac{3}{7} a^{14} + \frac{2}{7} a^{13} + \frac{2}{7} a^{12} + \frac{2}{7} a^{11} - \frac{1}{7} a^{10} - \frac{2}{7} a^{9} + \frac{3}{7} a^{8} + \frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{1}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{19} + \frac{1876671191882444829283105355711679806230030734855800700070296241614955}{28196861055985029300305434189895174052578777297638364392282386951181157} a^{18} - \frac{1655697726294893701936254765645037433268453935344893828427322141126905268}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{17} - \frac{8160445330974935061706203043607689720095591629714952268176188204158157413}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{16} - \frac{616426305153740269416810195947260989704237010757831671649430620150091326}{6449024935804575987112714305431739094025517493359860198863443072691576051} a^{15} + \frac{1411106617249122409890563844704946421987860158976783461221181571789331263}{6449024935804575987112714305431739094025517493359860198863443072691576051} a^{14} + \frac{5631790299000724435530425132609070109560763852826265136860399014021769764}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{13} + \frac{1377617203402812647566348876573332092329820005959313187474347935288343381}{6449024935804575987112714305431739094025517493359860198863443072691576051} a^{12} - \frac{2825452194379235975540954197474346918492559053715148861019924656962319647}{6449024935804575987112714305431739094025517493359860198863443072691576051} a^{11} + \frac{5453148608986051445973249927025130460284691294494773498278805184591457562}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{10} + \frac{6396675565618902852481698297020427821993341211363458362178854207540639263}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{9} + \frac{16637081725542411065185452637238016609704763393178569134783660240690229685}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{8} - \frac{5157401250972795118191320506196929366866120637988737420796572545078721505}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{7} - \frac{5573135879394518787545409007208853235617273473397968833483847660313972118}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{6} - \frac{20995916006095726019758197132366891825811575333729298695141565700199577573}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{5} + \frac{16157343310585507823615598099228933136485133282547943692913535574964831742}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{4} - \frac{8906464557836971337085004808646232502419873134388979505397156216595338951}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{3} - \frac{3168672026278900697529003212332604044595811893422196991985126913688778553}{45143174550632031909789000138022173658178622453519021392044101508841032357} a^{2} - \frac{10379161736670264502563068713311829442185483970879376316751060020531323953}{45143174550632031909789000138022173658178622453519021392044101508841032357} a - \frac{1441865849987526669529358314240427822894029343673023453253067058531743863}{6449024935804575987112714305431739094025517493359860198863443072691576051}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{35588}$, which has order $2277632$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.8376411007 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-215}) \), \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{5}, \sqrt{-43})\), 5.5.390625.1, \(\Q(\zeta_{25})^+\), 10.0.112158541107177734375.3, 10.0.22431708221435546875.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |