Normalized defining polynomial
\( x^{20} - 6 x^{19} + 28 x^{18} - 54 x^{17} + 56 x^{16} + 184 x^{15} + 1638 x^{14} - 16140 x^{13} + 84550 x^{12} - 301356 x^{11} + 842392 x^{10} - 1926386 x^{9} + 3717519 x^{8} - 6131704 x^{7} + 8726846 x^{6} - 10659646 x^{5} + 11152518 x^{4} - 9762542 x^{3} + 6937796 x^{2} - 3721474 x + 1233541 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12569066605710630176407970532818944=2^{30}\cdot 11^{18}\cdot 1451^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 1451$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{92311724094158979711149106269708729906316293518254134566591} a^{19} + \frac{25804702688606378118532774669790100625449870593022765156032}{92311724094158979711149106269708729906316293518254134566591} a^{18} - \frac{193631782671083300002167133612295222141195286176712365576}{92311724094158979711149106269708729906316293518254134566591} a^{17} - \frac{39620575110344484669015265921535416112558211624989165261793}{92311724094158979711149106269708729906316293518254134566591} a^{16} - \frac{19362379168750093178607202653036508014059754202471139641864}{92311724094158979711149106269708729906316293518254134566591} a^{15} + \frac{13006567712183861447723867477127722824987539510432149509531}{92311724094158979711149106269708729906316293518254134566591} a^{14} + \frac{9627220658052071376418177636753248515898205274750226527199}{92311724094158979711149106269708729906316293518254134566591} a^{13} + \frac{18718978028896175970922083445456594240183608047951967424623}{92311724094158979711149106269708729906316293518254134566591} a^{12} + \frac{16168877453439796444193690828522921920891107905536623026135}{92311724094158979711149106269708729906316293518254134566591} a^{11} - \frac{19779226401461038784079917628129141479406990398704970484087}{92311724094158979711149106269708729906316293518254134566591} a^{10} + \frac{33267931683385511913472723478133246958655452377144732964202}{92311724094158979711149106269708729906316293518254134566591} a^{9} - \frac{17042537655821918713731001209594682232102051821715791413549}{92311724094158979711149106269708729906316293518254134566591} a^{8} + \frac{34333279191668959235937513456155567811177672986357529855485}{92311724094158979711149106269708729906316293518254134566591} a^{7} + \frac{21350606699714095372863027459537878642824279086573479143489}{92311724094158979711149106269708729906316293518254134566591} a^{6} + \frac{31565282433241902939693797600061432250775087257828835646518}{92311724094158979711149106269708729906316293518254134566591} a^{5} + \frac{35931448362037599687440948272335459025771524027513674542323}{92311724094158979711149106269708729906316293518254134566591} a^{4} - \frac{41677772209322040921857334665780836530462537216431887434912}{92311724094158979711149106269708729906316293518254134566591} a^{3} - \frac{11514310973279953112134762461624130351111505422350470309070}{92311724094158979711149106269708729906316293518254134566591} a^{2} - \frac{22321588181515781684098981338708007146862388441850326526060}{92311724094158979711149106269708729906316293518254134566591} a - \frac{978637390964339981842130965315539607540917345745886448799}{2146784281259511156073235029528109997821309151587305455037}$
Class group and class number
$C_{2}\times C_{878}$, which has order $1756$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 281202.490766 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n340 are not computed |
| Character table for t20n340 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1451 | Data not computed | ||||||