Normalized defining polynomial
\( x^{20} - 4 x^{19} + 32 x^{18} + 6 x^{17} + 202 x^{16} + 938 x^{15} + 1790 x^{14} + 5494 x^{13} + 12527 x^{12} + 17820 x^{11} + 50458 x^{10} + 56452 x^{9} + 119267 x^{8} + 113984 x^{7} + 353348 x^{6} + 19962 x^{5} + 844391 x^{4} - 209964 x^{3} + 1076236 x^{2} - 150400 x + 539177 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12569066605710630176407970532818944=2^{30}\cdot 11^{18}\cdot 1451^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 1451$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{36830489166195777438162606245903182135714268171932465848246163} a^{19} + \frac{3199877219855898215723806085415848301407782295341574686641704}{36830489166195777438162606245903182135714268171932465848246163} a^{18} - \frac{8285922736765851791925107005227051923848830273527487857895921}{36830489166195777438162606245903182135714268171932465848246163} a^{17} + \frac{15661446560375530734912576948226712802634576912609474007861123}{36830489166195777438162606245903182135714268171932465848246163} a^{16} + \frac{5935924415187844639223989453601632448033516724951600791640447}{36830489166195777438162606245903182135714268171932465848246163} a^{15} - \frac{6825812926453077299365290026064284836627843815674795645026210}{36830489166195777438162606245903182135714268171932465848246163} a^{14} - \frac{8200226193356263604493837984018658375699484859325237832334262}{36830489166195777438162606245903182135714268171932465848246163} a^{13} + \frac{17037514825460145178225957775811428027895953690517537289770336}{36830489166195777438162606245903182135714268171932465848246163} a^{12} + \frac{16167114962864869339173760147996986846601699018537136858615556}{36830489166195777438162606245903182135714268171932465848246163} a^{11} - \frac{4477324552798714247299528428600814568105355407631513747023421}{36830489166195777438162606245903182135714268171932465848246163} a^{10} + \frac{17854854403288307731205116483281343118570177796891099890083350}{36830489166195777438162606245903182135714268171932465848246163} a^{9} + \frac{10140317243386841744164692362675002993865403170332508957177885}{36830489166195777438162606245903182135714268171932465848246163} a^{8} + \frac{18276556592300543223281233122129334258517874760743028699849207}{36830489166195777438162606245903182135714268171932465848246163} a^{7} + \frac{18262244182298802227968391804902470673521461346142214934589108}{36830489166195777438162606245903182135714268171932465848246163} a^{6} + \frac{10823214518058247371522683345193006465555382869507907084470593}{36830489166195777438162606245903182135714268171932465848246163} a^{5} + \frac{17991160413464997949839439033580940100892724036359625180354149}{36830489166195777438162606245903182135714268171932465848246163} a^{4} - \frac{15806727410508650169183241163679299544897747935115557915659091}{36830489166195777438162606245903182135714268171932465848246163} a^{3} - \frac{5767218862661068335837269180972476369708487180344057040236730}{36830489166195777438162606245903182135714268171932465848246163} a^{2} - \frac{12029421879344767399204415236474932990403965776626992000247374}{36830489166195777438162606245903182135714268171932465848246163} a - \frac{7820119696035868484395643228744238992791921327316718430889013}{36830489166195777438162606245903182135714268171932465848246163}$
Class group and class number
$C_{2}\times C_{850}$, which has order $1700$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 281202.490766 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n340 are not computed |
| Character table for t20n340 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1451 | Data not computed | ||||||