Normalized defining polynomial
\( x^{20} - 4 x^{18} + 90 x^{16} - 72 x^{14} + 4684 x^{12} + 1792 x^{10} - 56320 x^{8} + 538208 x^{6} + 489808 x^{4} - 2811072 x^{2} + 5153632 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1243811788377812389377718878208=2^{55}\cdot 11^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{88} a^{12} - \frac{1}{22} a^{10} + \frac{1}{44} a^{8} + \frac{2}{11} a^{6} + \frac{5}{22} a^{4} + \frac{4}{11} a^{2}$, $\frac{1}{88} a^{13} - \frac{1}{22} a^{11} + \frac{1}{44} a^{9} + \frac{2}{11} a^{7} + \frac{5}{22} a^{5} + \frac{4}{11} a^{3}$, $\frac{1}{968} a^{14} - \frac{1}{242} a^{12} + \frac{45}{484} a^{10} - \frac{9}{121} a^{8} - \frac{39}{242} a^{6} - \frac{18}{121} a^{4} - \frac{2}{11} a^{2}$, $\frac{1}{968} a^{15} - \frac{1}{242} a^{13} + \frac{45}{484} a^{11} - \frac{9}{121} a^{9} - \frac{39}{242} a^{7} - \frac{18}{121} a^{5} - \frac{2}{11} a^{3}$, $\frac{1}{404624} a^{16} - \frac{23}{101156} a^{14} + \frac{9}{5324} a^{12} + \frac{2873}{50578} a^{10} + \frac{2050}{25289} a^{8} + \frac{11741}{50578} a^{6} - \frac{925}{4598} a^{4} - \frac{5}{11} a^{2} + \frac{8}{19}$, $\frac{1}{404624} a^{17} - \frac{23}{101156} a^{15} + \frac{9}{5324} a^{13} + \frac{2873}{50578} a^{11} + \frac{2050}{25289} a^{9} + \frac{11741}{50578} a^{7} - \frac{925}{4598} a^{5} - \frac{5}{11} a^{3} + \frac{8}{19} a$, $\frac{1}{3139769250657171002992} a^{18} - \frac{2291154528297859}{3139769250657171002992} a^{16} + \frac{354070295993815121}{784942312664292750748} a^{14} + \frac{1679198839739226249}{784942312664292750748} a^{12} + \frac{38389802254651339467}{392471156332146375374} a^{10} - \frac{8030774746679985232}{196235578166073187687} a^{8} + \frac{643377714407135217}{35679196030195125034} a^{6} - \frac{31940900853740929}{147434694339649277} a^{4} - \frac{60818151940402528}{147434694339649277} a^{2} + \frac{3749412644207389}{13403154030877207}$, $\frac{1}{3139769250657171002992} a^{19} - \frac{2291154528297859}{3139769250657171002992} a^{17} + \frac{354070295993815121}{784942312664292750748} a^{15} + \frac{1679198839739226249}{784942312664292750748} a^{13} + \frac{38389802254651339467}{392471156332146375374} a^{11} - \frac{8030774746679985232}{196235578166073187687} a^{9} + \frac{643377714407135217}{35679196030195125034} a^{7} - \frac{31940900853740929}{147434694339649277} a^{5} - \frac{60818151940402528}{147434694339649277} a^{3} + \frac{3749412644207389}{13403154030877207} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5058464.3856691625 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.22528.1, 10.0.479756288.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |