Normalized defining polynomial
\( x^{20} + 240 x^{18} + 18000 x^{16} + 567000 x^{14} + 8650800 x^{12} + 68603760 x^{10} + 285913800 x^{8} + 612360000 x^{6} + 656100000 x^{4} + 314928000 x^{2} + 47239200 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1238347284480000000000000000000000000000000000=2^{55}\cdot 3^{10}\cdot 5^{34}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $179.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1200=2^{4}\cdot 3\cdot 5^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1200}(1,·)$, $\chi_{1200}(389,·)$, $\chi_{1200}(961,·)$, $\chi_{1200}(841,·)$, $\chi_{1200}(269,·)$, $\chi_{1200}(721,·)$, $\chi_{1200}(149,·)$, $\chi_{1200}(121,·)$, $\chi_{1200}(601,·)$, $\chi_{1200}(989,·)$, $\chi_{1200}(481,·)$, $\chi_{1200}(869,·)$, $\chi_{1200}(361,·)$, $\chi_{1200}(749,·)$, $\chi_{1200}(29,·)$, $\chi_{1200}(241,·)$, $\chi_{1200}(629,·)$, $\chi_{1200}(1081,·)$, $\chi_{1200}(509,·)$, $\chi_{1200}(1109,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{18} a^{4}$, $\frac{1}{18} a^{5}$, $\frac{1}{378} a^{6} - \frac{3}{7}$, $\frac{1}{378} a^{7} - \frac{3}{7} a$, $\frac{1}{2268} a^{8} + \frac{2}{21} a^{2}$, $\frac{1}{2268} a^{9} + \frac{2}{21} a^{3}$, $\frac{1}{34020} a^{10} - \frac{1}{63} a^{4}$, $\frac{1}{34020} a^{11} - \frac{1}{63} a^{5}$, $\frac{1}{1428840} a^{12} - \frac{1}{1323} a^{6} + \frac{10}{49}$, $\frac{1}{1428840} a^{13} - \frac{1}{1323} a^{7} + \frac{10}{49} a$, $\frac{1}{4286520} a^{14} + \frac{1}{5292} a^{8} + \frac{8}{49} a^{2}$, $\frac{1}{4286520} a^{15} + \frac{1}{5292} a^{9} + \frac{8}{49} a^{3}$, $\frac{1}{180033840} a^{16} - \frac{1}{30005640} a^{14} + \frac{1}{5000940} a^{12} - \frac{2}{138915} a^{10} - \frac{5}{55566} a^{8} + \frac{5}{9261} a^{6} - \frac{79}{3087} a^{4} - \frac{29}{343} a^{2} - \frac{169}{343}$, $\frac{1}{180033840} a^{17} - \frac{1}{30005640} a^{15} + \frac{1}{5000940} a^{13} - \frac{2}{138915} a^{11} - \frac{5}{55566} a^{9} + \frac{5}{9261} a^{7} - \frac{79}{3087} a^{5} - \frac{29}{343} a^{3} - \frac{169}{343} a$, $\frac{1}{3780710640} a^{18} + \frac{1}{630118440} a^{16} + \frac{1}{17503290} a^{14} + \frac{2}{8751645} a^{12} + \frac{1}{11668860} a^{10} - \frac{19}{194481} a^{8} + \frac{5}{43218} a^{6} - \frac{71}{43218} a^{4} + \frac{652}{7203} a^{2} + \frac{521}{2401}$, $\frac{1}{3780710640} a^{19} + \frac{1}{630118440} a^{17} + \frac{1}{17503290} a^{15} + \frac{2}{8751645} a^{13} + \frac{1}{11668860} a^{11} - \frac{19}{194481} a^{9} + \frac{5}{43218} a^{7} - \frac{71}{43218} a^{5} + \frac{652}{7203} a^{3} + \frac{521}{2401} a$
Class group and class number
$C_{2}\times C_{20555050}$, which has order $41110100$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42294001.73672045 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.460800.2, 5.5.390625.1, 10.10.5000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{20}$ | $20$ | $20$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||