Normalized defining polynomial
\( x^{20} + 150 x^{18} + 10795 x^{16} - 2 x^{15} + 486760 x^{14} + 200 x^{13} + 15154205 x^{12} + 17670 x^{11} + 339291893 x^{10} + 549990 x^{9} + 5521535750 x^{8} + 7465670 x^{7} + 64418095255 x^{6} + 9394408 x^{5} + 515424060710 x^{4} - 929158550 x^{3} + 2554775839555 x^{2} - 8326865360 x + 5962868284301 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1230465027129516601562500000000000000000000=2^{20}\cdot 5^{34}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $127.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1700=2^{2}\cdot 5^{2}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1700}(1,·)$, $\chi_{1700}(69,·)$, $\chi_{1700}(1089,·)$, $\chi_{1700}(1291,·)$, $\chi_{1700}(271,·)$, $\chi_{1700}(1361,·)$, $\chi_{1700}(1699,·)$, $\chi_{1700}(1429,·)$, $\chi_{1700}(409,·)$, $\chi_{1700}(1359,·)$, $\chi_{1700}(1631,·)$, $\chi_{1700}(611,·)$, $\chi_{1700}(679,·)$, $\chi_{1700}(681,·)$, $\chi_{1700}(749,·)$, $\chi_{1700}(339,·)$, $\chi_{1700}(951,·)$, $\chi_{1700}(1019,·)$, $\chi_{1700}(1021,·)$, $\chi_{1700}(341,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{149} a^{18} - \frac{72}{149} a^{17} - \frac{39}{149} a^{16} + \frac{29}{149} a^{15} - \frac{31}{149} a^{14} + \frac{32}{149} a^{13} + \frac{38}{149} a^{12} + \frac{7}{149} a^{11} + \frac{59}{149} a^{10} - \frac{51}{149} a^{9} - \frac{18}{149} a^{8} - \frac{2}{149} a^{7} - \frac{5}{149} a^{6} - \frac{44}{149} a^{5} + \frac{49}{149} a^{4} - \frac{45}{149} a^{3} - \frac{38}{149} a^{2} - \frac{51}{149} a + \frac{20}{149}$, $\frac{1}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{19} + \frac{6245179826185378817036355340034379236995942970333676303649556746158614626978541}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{18} - \frac{696297370414873080061333110203535256429220078278658593107245712932232579860324952}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{17} + \frac{1081832944938775454473665462153354958758731107906632683553406257385887596780089256}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{16} - \frac{1515594028575829883150328847553081788191073202259517022516859818923048846617679238}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{15} - \frac{1111516163253297726199368369139670375950385252585359777802729749136946842350133498}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{14} + \frac{475550165839717027720173907247289475458534752658594414979687507125510111266458608}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{13} + \frac{1057034256814498544151404922330352702236044226759512674923519064706386873334179530}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{12} + \frac{480077160137439233308137075628807493514860601364254148883618841142125195473753823}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{11} - \frac{318633796297357559146762128997727712180941556496075624084860038406355043354913061}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{10} - \frac{205907182621453627317040773074379493023022816434077610556061616523503335783144122}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{9} - \frac{450121775440522467650969636349577769204578207331533326716778140258856258336212214}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{8} + \frac{1019883209691895699243367011287180445482388347367682087933390413414238031813470360}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{7} + \frac{1477346738346854747634941413181116384620907432494378997048183363494133527443470769}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{6} + \frac{242361873957709025159484401513664637137995277796892015842279433405383074450508687}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{5} - \frac{644082392496113317006432654938310745752959474053285371835235474131719343217448289}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{4} - \frac{783198968068270668267459029453891300803039180891003176376283547740789772805134764}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{3} - \frac{633005311542010881593266520843121291355694226538181712218909319827981937974034564}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a^{2} - \frac{1527093688118124317534336971191184860951858645484061694431083636565455765205116998}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057} a + \frac{351851798821843011095608412604318913356545731395332332681236876182433222772875896}{3094915019473029545912166499306290576016429838864350928204081940349036324049780057}$
Class group and class number
$C_{28056248}$, which has order $28056248$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.8376411007 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-85}) \), \(\Q(\sqrt{-17}) \), \(\Q(\sqrt{5}, \sqrt{-17})\), 5.5.390625.1, \(\Q(\zeta_{25})^+\), 10.0.1109263281250000000000.3, 10.0.221852656250000000000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||