Normalized defining polynomial
\( x^{20} + 140 x^{18} + 8330 x^{16} - 281 x^{15} + 274400 x^{14} - 29505 x^{13} + 5462275 x^{12} - 1239210 x^{11} + 67390996 x^{10} - 26505325 x^{9} + 511417970 x^{8} - 303606450 x^{7} + 2338395640 x^{6} - 1816839501 x^{5} + 6398382025 x^{4} - 5735486785 x^{3} + 9783834900 x^{2} - 11221459620 x + 14282703401 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1224419198989056167192757129669189453125=5^{35}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(725=5^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{725}(1,·)$, $\chi_{725}(581,·)$, $\chi_{725}(202,·)$, $\chi_{725}(204,·)$, $\chi_{725}(463,·)$, $\chi_{725}(146,·)$, $\chi_{725}(347,·)$, $\chi_{725}(28,·)$, $\chi_{725}(349,·)$, $\chi_{725}(608,·)$, $\chi_{725}(291,·)$, $\chi_{725}(492,·)$, $\chi_{725}(173,·)$, $\chi_{725}(494,·)$, $\chi_{725}(436,·)$, $\chi_{725}(57,·)$, $\chi_{725}(59,·)$, $\chi_{725}(637,·)$, $\chi_{725}(318,·)$, $\chi_{725}(639,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{71} a^{10} - \frac{1}{71} a^{8} + \frac{11}{71} a^{6} - \frac{34}{71} a^{5} - \frac{32}{71} a^{4} + \frac{17}{71} a^{3} + \frac{30}{71} a^{2} - \frac{23}{71} a - \frac{20}{71}$, $\frac{1}{71} a^{11} - \frac{1}{71} a^{9} + \frac{11}{71} a^{7} - \frac{34}{71} a^{6} - \frac{32}{71} a^{5} + \frac{17}{71} a^{4} + \frac{30}{71} a^{3} - \frac{23}{71} a^{2} - \frac{20}{71} a$, $\frac{1}{71} a^{12} + \frac{10}{71} a^{8} - \frac{34}{71} a^{7} - \frac{21}{71} a^{6} - \frac{17}{71} a^{5} - \frac{2}{71} a^{4} - \frac{6}{71} a^{3} + \frac{10}{71} a^{2} - \frac{23}{71} a - \frac{20}{71}$, $\frac{1}{745401121921} a^{13} - \frac{3601962468}{745401121921} a^{12} + \frac{91}{745401121921} a^{11} + \frac{1894765867}{745401121921} a^{10} + \frac{3185}{745401121921} a^{9} + \frac{348396826963}{745401121921} a^{8} + \frac{220470807879}{745401121921} a^{7} - \frac{53838321263}{745401121921} a^{6} - \frac{293960568846}{745401121921} a^{5} + \frac{319253050135}{745401121921} a^{4} + \frac{251968105861}{745401121921} a^{3} + \frac{251775560125}{745401121921} a^{2} + \frac{83990388245}{745401121921} a - \frac{139472459499}{745401121921}$, $\frac{1}{745401121921} a^{14} + \frac{98}{745401121921} a^{12} + \frac{4216522574}{745401121921} a^{11} + \frac{3773}{745401121921} a^{10} + \frac{219686164688}{745401121921} a^{9} + \frac{72030}{745401121921} a^{8} + \frac{240496672651}{745401121921} a^{7} - \frac{83988152914}{745401121921} a^{6} + \frac{45843959261}{745401121921} a^{5} + \frac{41997723576}{745401121921} a^{4} - \frac{222220319788}{745401121921} a^{3} + \frac{293966770629}{745401121921} a^{2} + \frac{79439745754}{745401121921} a + \frac{1647086}{745401121921}$, $\frac{1}{745401121921} a^{15} + \frac{256194504}{745401121921} a^{12} - \frac{5145}{745401121921} a^{11} + \frac{2503287669}{745401121921} a^{10} - \frac{240100}{745401121921} a^{9} - \frac{170366950960}{745401121921} a^{8} + \frac{136477357673}{745401121921} a^{7} - \frac{200268023591}{745401121921} a^{6} + \frac{209932616956}{745401121921} a^{5} + \frac{28797249386}{745401121921} a^{4} + \frac{314814100505}{745401121921} a^{3} - \frac{38322552507}{745401121921} a^{2} - \frac{42142667144}{745401121921} a - \frac{179362065067}{745401121921}$, $\frac{1}{745401121921} a^{16} - \frac{5880}{745401121921} a^{12} + \frac{186802507}{745401121921} a^{11} - \frac{301840}{745401121921} a^{10} - \frac{261942538981}{745401121921} a^{9} - \frac{6482700}{745401121921} a^{8} + \frac{138413092015}{745401121921} a^{7} + \frac{52425270931}{745401121921} a^{6} + \frac{128046759681}{745401121921} a^{5} + \frac{346124625383}{745401121921} a^{4} - \frac{368109440614}{745401121921} a^{3} + \frac{188381981358}{745401121921} a^{2} + \frac{225753561396}{745401121921} a - \frac{172944030}{745401121921}$, $\frac{1}{745401121921} a^{17} - \frac{3661482366}{745401121921} a^{12} + \frac{233240}{745401121921} a^{11} + \frac{2723543343}{745401121921} a^{10} + \frac{12245100}{745401121921} a^{9} + \frac{108004626474}{745401121921} a^{8} + \frac{252213437640}{745401121921} a^{7} + \frac{291202905560}{745401121921} a^{6} - \frac{176236288007}{745401121921} a^{5} + \frac{3789214916}{745401121921} a^{4} + \frac{270865322375}{745401121921} a^{3} - \frac{194015584207}{745401121921} a^{2} - \frac{180154786788}{745401121921} a + \frac{336606804477}{745401121921}$, $\frac{1}{745401121921} a^{18} + \frac{279888}{745401121921} a^{12} - \frac{36996583}{745401121921} a^{11} + \frac{16163532}{745401121921} a^{10} + \frac{179363446680}{745401121921} a^{9} + \frac{370291824}{745401121921} a^{8} - \frac{324128265232}{745401121921} a^{7} + \frac{119516747389}{745401121921} a^{6} + \frac{311877187756}{745401121921} a^{5} + \frac{335118553170}{745401121921} a^{4} + \frac{264874487024}{745401121921} a^{3} + \frac{5548789173}{745401121921} a^{2} - \frac{212369429988}{745401121921} a + \frac{10976181104}{745401121921}$, $\frac{1}{745401121921} a^{19} - \frac{3733847476}{745401121921} a^{12} - \frac{9306276}{745401121921} a^{11} - \frac{5188740120}{745401121921} a^{10} - \frac{521151456}{745401121921} a^{9} + \frac{109149224413}{745401121921} a^{8} + \frac{94041892934}{745401121921} a^{7} - \frac{258609877709}{745401121921} a^{6} - \frac{112644292727}{745401121921} a^{5} + \frac{294646299635}{745401121921} a^{4} - \frac{34073801896}{745401121921} a^{3} - \frac{134617915311}{745401121921} a^{2} + \frac{181325737055}{745401121921} a - \frac{261974537784}{745401121921}$
Class group and class number
$C_{2}\times C_{319762}$, which has order $639524$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.837641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.105125.2, 5.5.390625.1, \(\Q(\zeta_{25})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $29$ | 29.10.5.2 | $x^{10} - 707281 x^{2} + 225622639$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 29.10.5.2 | $x^{10} - 707281 x^{2} + 225622639$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |