Normalized defining polynomial
\( x^{20} - 10 x^{19} + 40 x^{18} - 75 x^{17} + 75 x^{16} - 158 x^{15} + 615 x^{14} - 3420 x^{13} + 16815 x^{12} - 53335 x^{11} + 143098 x^{10} - 352875 x^{9} + 694400 x^{8} - 1199615 x^{7} + 2000995 x^{6} - 2758493 x^{5} + 3162985 x^{4} - 3571940 x^{3} + 3414000 x^{2} - 1907160 x + 426416 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(122036678824641125202178955078125=5^{22}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} + \frac{1}{8} a^{13} + \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{4} a^{9} - \frac{3}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{16} - \frac{1}{4} a^{15} - \frac{1}{8} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{4} a^{8} + \frac{1}{8} a^{6} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{18198701516734855765093550260450294132480575688628456} a^{19} + \frac{272024871174578269463746247118147949160387919158417}{4549675379183713941273387565112573533120143922157114} a^{18} - \frac{123728448294857984979883079267616431557140949186587}{2274837689591856970636693782556286766560071961078557} a^{17} + \frac{471374844840989020099446090845386276491828545477475}{18198701516734855765093550260450294132480575688628456} a^{16} + \frac{2269743079723664173173791641547771737795673069322819}{18198701516734855765093550260450294132480575688628456} a^{15} - \frac{955556218996186509364361179658840118681597466532033}{4549675379183713941273387565112573533120143922157114} a^{14} - \frac{3774751748654836796524531176965593205795657344401793}{18198701516734855765093550260450294132480575688628456} a^{13} - \frac{29134992973401221195099705306846316685158256087020}{2274837689591856970636693782556286766560071961078557} a^{12} - \frac{1359925402866896651497805958559708286238810430318519}{18198701516734855765093550260450294132480575688628456} a^{11} + \frac{8380336579592545024219369722357347774430774111266141}{18198701516734855765093550260450294132480575688628456} a^{10} - \frac{1412317523036635077685232501981619443126184442670205}{4549675379183713941273387565112573533120143922157114} a^{9} - \frac{1986491321178486383377862376136550219891173824763251}{18198701516734855765093550260450294132480575688628456} a^{8} + \frac{588960985127574298070346023088328346049312237050020}{2274837689591856970636693782556286766560071961078557} a^{7} - \frac{3036523525188674734386884544500121885202469545916741}{18198701516734855765093550260450294132480575688628456} a^{6} + \frac{19228893450871794634564808094737705667689529485755}{105194806455114773208633238499712682846708529992072} a^{5} - \frac{8442073519895215533611403357296958410940789854512939}{18198701516734855765093550260450294132480575688628456} a^{4} + \frac{953828432147308040816186811733186304781840816967979}{18198701516734855765093550260450294132480575688628456} a^{3} + \frac{559416611878779697489176202557526846848202724095579}{4549675379183713941273387565112573533120143922157114} a^{2} - \frac{608673368287449317449794399989934040060519905414276}{2274837689591856970636693782556286766560071961078557} a - \frac{203066953596380034689350187087307646609737314809746}{2274837689591856970636693782556286766560071961078557}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54862279.394896545 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.54925.1, 5.1.528125.1, 10.2.3625908203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||