Normalized defining polynomial
\( x^{20} - 78330153 x^{15} + 2737990582811559 x^{10} - 24499004414433966486927 x^{5} + 75302901891158409924316939431 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(122003826420211264288677099926477115147088065905336526338942348957061767578125=3^{16}\cdot 5^{35}\cdot 31^{12}\cdot 181^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $7150.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 31, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{93} a^{8} + \frac{9}{31} a^{3}$, $\frac{1}{93} a^{9} + \frac{9}{31} a^{4}$, $\frac{1}{17220159} a^{10} + \frac{20511}{173941} a^{5} - \frac{3}{11}$, $\frac{1}{17220159} a^{11} + \frac{20511}{173941} a^{6} - \frac{3}{11} a$, $\frac{1}{533824929} a^{12} - \frac{2373641}{16176513} a^{7} + \frac{30}{341} a^{2}$, $\frac{1}{96622312149} a^{13} - \frac{2373641}{2927948853} a^{8} + \frac{19467}{61721} a^{3}$, $\frac{1}{2995291676619} a^{14} - \frac{2373641}{90766414443} a^{9} + \frac{883561}{1913351} a^{4}$, $\frac{1}{1338196231172409953024544392341964943} a^{15} - \frac{12606757049234836739682249614}{446065410390803317674848130780654981} a^{10} - \frac{92614515813996850039302862445}{854821290726555398429827989147} a^{5} + \frac{39861871681246086851}{291952262024897945999}$, $\frac{1}{1338196231172409953024544392341964943} a^{16} - \frac{12606757049234836739682249614}{446065410390803317674848130780654981} a^{11} - \frac{92614515813996850039302862445}{854821290726555398429827989147} a^{6} + \frac{39861871681246086851}{291952262024897945999} a$, $\frac{1}{7508619053108392246420718585430765295173} a^{17} + \frac{557274103435135428880203076484}{2502873017702797415473572861810255098391} a^{12} - \frac{275122054824386914804813737409708}{4796402262266702340589764847103817} a^{7} - \frac{341544284697449350731979}{1638144142221702375000389} a^{2}$, $\frac{1}{232767190646360159639042276148353724150363} a^{18} - \frac{219836160861733115146913277286}{77589063548786719879680758716117908050121} a^{13} - \frac{158471071827768999391864787019238}{148688470130267772558282710260218327} a^{8} - \frac{19118108982337276777357847}{50782468408872773625012059} a^{3}$, $\frac{1}{1306056706716726855734666211468412746207686793} a^{19} + \frac{28688665670981776722661815082958}{435352235572242285244888737156137582069228931} a^{14} + \frac{1914063017267378980783152373099982078}{834291005900932471824524287270085032797} a^{9} - \frac{19075665370938533317586566664}{284940430242185132809942663049} a^{4}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{217435832299865}{1338196231172409953024544392341964943} a^{15} - \frac{4713174228091437696949}{446065410390803317674848130780654981} a^{10} + \frac{93138732302166305144585}{284940430242185132809942663049} a^{5} - \frac{228020258318526907615}{291952262024897945999} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times F_5$ (as 20T29):
| A solvable group of order 100 |
| The 25 conjugacy class representatives for $C_5\times F_5$ |
| Character table for $C_5\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{20}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $31$ | 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 31.5.4.4 | $x^{5} + 10633$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 31.5.4.5 | $x^{5} - 74431$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 31.5.0.1 | $x^{5} - x + 10$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $181$ | 181.5.4.5 | $x^{5} - 2896$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 181.5.4.3 | $x^{5} - 724$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 181.5.4.2 | $x^{5} + 362$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 181.5.0.1 | $x^{5} - x + 10$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |