Normalized defining polynomial
\( x^{20} + 2 x^{18} - 8 x^{17} + 8 x^{16} - 14 x^{15} + 26 x^{14} - 43 x^{13} + 62 x^{12} - 52 x^{11} + 99 x^{10} - 104 x^{9} + 89 x^{8} - 91 x^{7} + 67 x^{6} - 84 x^{5} + 22 x^{4} - 14 x^{3} + 29 x^{2} + 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12141946772837571181640625=3^{10}\cdot 5^{10}\cdot 4588681^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 4588681$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{191} a^{18} - \frac{3}{191} a^{17} + \frac{2}{191} a^{16} + \frac{13}{191} a^{15} - \frac{49}{191} a^{14} + \frac{16}{191} a^{13} + \frac{37}{191} a^{12} + \frac{84}{191} a^{11} + \frac{50}{191} a^{10} - \frac{3}{191} a^{9} + \frac{40}{191} a^{8} - \frac{6}{191} a^{7} - \frac{62}{191} a^{6} - \frac{42}{191} a^{5} - \frac{13}{191} a^{4} - \frac{49}{191} a^{3} + \frac{95}{191} a^{2} - \frac{49}{191} a + \frac{85}{191}$, $\frac{1}{180523634147} a^{19} + \frac{154663165}{180523634147} a^{18} - \frac{75341888346}{180523634147} a^{17} - \frac{70067563523}{180523634147} a^{16} - \frac{81064995799}{180523634147} a^{15} - \frac{39459930435}{180523634147} a^{14} - \frac{54614536926}{180523634147} a^{13} + \frac{28824121382}{180523634147} a^{12} + \frac{37191861315}{180523634147} a^{11} - \frac{61972472098}{180523634147} a^{10} + \frac{71102374300}{180523634147} a^{9} - \frac{64124894279}{180523634147} a^{8} + \frac{12410230890}{180523634147} a^{7} - \frac{11215759363}{180523634147} a^{6} - \frac{89625495690}{180523634147} a^{5} + \frac{46059837803}{180523634147} a^{4} + \frac{4249848363}{180523634147} a^{3} - \frac{2016847770}{5823343037} a^{2} + \frac{4616284336}{180523634147} a - \frac{46443257927}{180523634147}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{40395385}{945149917} a^{19} - \frac{88505642}{945149917} a^{18} + \frac{139728658}{945149917} a^{17} - \frac{316633435}{945149917} a^{16} + \frac{1071470390}{945149917} a^{15} - \frac{1345421404}{945149917} a^{14} + \frac{1304909299}{945149917} a^{13} - \frac{2769479219}{945149917} a^{12} + \frac{4746280372}{945149917} a^{11} - \frac{5289749377}{945149917} a^{10} + \frac{3688176428}{945149917} a^{9} - \frac{3100468798}{945149917} a^{8} + \frac{6895341891}{945149917} a^{7} - \frac{703231179}{945149917} a^{6} - \frac{1569078531}{945149917} a^{5} + \frac{3469524405}{945149917} a^{4} - \frac{819618435}{945149917} a^{3} + \frac{32433735}{30488707} a^{2} - \frac{5100491531}{945149917} a + \frac{36956188}{945149917} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34456.4237695 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 70 conjugacy class representatives for t20n656 are not computed |
| Character table for t20n656 is not computed |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 10.6.14339628125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 4588681 | Data not computed | ||||||