Normalized defining polynomial
\( x^{20} - 5 x^{19} + 15 x^{18} - 35 x^{17} + 70 x^{16} + 1303 x^{15} - 5155 x^{14} + 6865 x^{13} + 16340 x^{12} - 130305 x^{11} + 1032069 x^{10} - 2214685 x^{9} - 476720 x^{8} + 9027905 x^{7} + 23133065 x^{6} + 134738047 x^{5} - 202273790 x^{4} - 442292655 x^{3} - 451806705 x^{2} - 227496465 x + 16243247601 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12106821425921044089921349789500781250000000000000000=2^{16}\cdot 5^{23}\cdot 89^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $401.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} + \frac{2}{5}$, $\frac{1}{5} a^{6} + \frac{2}{5} a$, $\frac{1}{5} a^{7} + \frac{2}{5} a^{2}$, $\frac{1}{25} a^{8} + \frac{1}{25} a^{7} + \frac{2}{25} a^{6} - \frac{2}{25} a^{5} + \frac{12}{25} a^{3} + \frac{12}{25} a^{2} - \frac{1}{25} a + \frac{1}{25}$, $\frac{1}{25} a^{9} + \frac{1}{25} a^{7} + \frac{1}{25} a^{6} + \frac{2}{25} a^{5} + \frac{12}{25} a^{4} + \frac{12}{25} a^{2} + \frac{12}{25} a - \frac{1}{25}$, $\frac{1}{25} a^{10} - \frac{1}{25} a^{5} - \frac{6}{25}$, $\frac{1}{125} a^{11} + \frac{2}{125} a^{10} - \frac{1}{125} a^{6} - \frac{2}{125} a^{5} - \frac{31}{125} a - \frac{62}{125}$, $\frac{1}{250} a^{12} - \frac{1}{250} a^{11} + \frac{2}{125} a^{10} - \frac{1}{50} a^{8} - \frac{3}{125} a^{7} - \frac{9}{250} a^{6} + \frac{3}{125} a^{5} - \frac{1}{2} a^{4} - \frac{6}{25} a^{3} + \frac{17}{125} a^{2} - \frac{89}{250} a + \frac{121}{250}$, $\frac{1}{250} a^{13} - \frac{1}{250} a^{11} - \frac{2}{125} a^{10} - \frac{1}{50} a^{9} - \frac{1}{250} a^{8} - \frac{1}{50} a^{7} + \frac{21}{250} a^{6} + \frac{19}{250} a^{5} + \frac{13}{50} a^{4} + \frac{47}{125} a^{3} + \frac{13}{50} a^{2} - \frac{52}{125} a - \frac{71}{250}$, $\frac{1}{17750} a^{14} - \frac{1}{8875} a^{13} + \frac{2}{8875} a^{12} + \frac{63}{17750} a^{11} - \frac{197}{17750} a^{10} - \frac{11}{17750} a^{9} + \frac{11}{8875} a^{8} + \frac{1731}{17750} a^{7} - \frac{879}{8875} a^{6} + \frac{37}{17750} a^{5} + \frac{7099}{17750} a^{4} - \frac{5323}{17750} a^{3} - \frac{1777}{8875} a^{2} - \frac{209}{8875} a - \frac{4063}{17750}$, $\frac{1}{88750} a^{15} - \frac{689}{88750} a^{10} + \frac{3907}{88750} a^{5} - \frac{15297}{88750}$, $\frac{1}{88750} a^{16} + \frac{21}{88750} a^{11} + \frac{2}{125} a^{10} + \frac{3197}{88750} a^{6} - \frac{2}{125} a^{5} - \frac{37307}{88750} a - \frac{62}{125}$, $\frac{1}{508410923448303750} a^{17} + \frac{925879346309}{254205461724151875} a^{16} - \frac{271866161148}{84735153908050625} a^{15} - \frac{5920915481}{290520527684745} a^{14} - \frac{4299416781401}{2905205276847450} a^{13} + \frac{833130439722631}{508410923448303750} a^{12} - \frac{554235135593527}{508410923448303750} a^{11} + \frac{141784951380176}{254205461724151875} a^{10} + \frac{130171163015513}{20336436937932150} a^{9} - \frac{224169905059}{11392961869990} a^{8} - \frac{6345700575534148}{84735153908050625} a^{7} - \frac{19060374154174399}{508410923448303750} a^{6} + \frac{15081234050827939}{508410923448303750} a^{5} - \frac{4296367623168289}{20336436937932150} a^{4} - \frac{302287108975736}{10168218468966075} a^{3} - \frac{85572239884144771}{254205461724151875} a^{2} + \frac{97766214231765752}{254205461724151875} a + \frac{595392669659563}{1424120233748750}$, $\frac{1}{181502699671044438750} a^{18} - \frac{1}{36300539934208887750} a^{17} + \frac{31897594177924}{30250449945174073125} a^{16} + \frac{40973744903078}{12964478547931745625} a^{15} - \frac{136629079825453}{5185791419172698250} a^{14} + \frac{36971631357875603}{90751349835522219375} a^{13} + \frac{32446962835143421}{36300539934208887750} a^{12} + \frac{226855371562808057}{90751349835522219375} a^{11} - \frac{2910375723297227953}{181502699671044438750} a^{10} + \frac{691814872681039}{50841092344830375} a^{9} + \frac{286212858128874527}{30250449945174073125} a^{8} - \frac{647747538719946509}{36300539934208887750} a^{7} - \frac{14399780583448681847}{181502699671044438750} a^{6} + \frac{580942840695589042}{90751349835522219375} a^{5} + \frac{1354913820742415513}{18150269967104443875} a^{4} + \frac{41654925897561419504}{90751349835522219375} a^{3} + \frac{97611665396666129}{3630053993420888775} a^{2} - \frac{114926889211909582}{254205461724151875} a - \frac{64491681162833}{712060116874375}$, $\frac{1}{323982318912814323168750} a^{19} - \frac{181}{161991159456407161584375} a^{18} + \frac{4787}{11999345144919049006250} a^{17} + \frac{6611370790973534}{3305942029722595134375} a^{16} - \frac{52480722840997831}{23141594208058165940625} a^{15} + \frac{8858137852137922111}{323982318912814323168750} a^{14} - \frac{137025588739770139657}{323982318912814323168750} a^{13} - \frac{267542045490790143718}{161991159456407161584375} a^{12} - \frac{135352434768061429274}{161991159456407161584375} a^{11} - \frac{3410568996075159266}{453756749177611096875} a^{10} + \frac{563408214105382493747}{53997053152135720528125} a^{9} + \frac{2503191141092420543308}{161991159456407161584375} a^{8} + \frac{2271368559332372486984}{161991159456407161584375} a^{7} + \frac{1524643542838568030962}{161991159456407161584375} a^{6} - \frac{1362799941100284714163}{323982318912814323168750} a^{5} - \frac{3312383933262397985597}{323982318912814323168750} a^{4} - \frac{5567486694937386206518}{161991159456407161584375} a^{3} - \frac{22487260926887132553}{50417416575290121875} a^{2} + \frac{404492975322623479}{2542054617241518750} a - \frac{742790117688982}{3560300584371875}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{4}\times C_{40}\times C_{40}\times C_{40}\times C_{40}$, which has order $655360000$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2607775861192}{32398231891281432316875} a^{19} - \frac{6380649266219}{32398231891281432316875} a^{18} + \frac{6380649266219}{10799410630427144105625} a^{17} - \frac{6380649266219}{4628318841611633188125} a^{16} + \frac{12761298532438}{4628318841611633188125} a^{15} + \frac{3656650345484827}{32398231891281432316875} a^{14} - \frac{6578449393471789}{32398231891281432316875} a^{13} + \frac{8760631442518687}{32398231891281432316875} a^{12} + \frac{20851961802003692}{32398231891281432316875} a^{11} - \frac{465787396433987}{90751349835522219375} a^{10} + \frac{729607852605333343}{10799410630427144105625} a^{9} - \frac{2826225644031245203}{32398231891281432316875} a^{8} - \frac{608356623638384336}{32398231891281432316875} a^{7} + \frac{11520779082748968239}{32398231891281432316875} a^{6} + \frac{29520794843529286247}{32398231891281432316875} a^{5} + \frac{924649262165373325036}{32398231891281432316875} a^{4} - \frac{258127621947767220002}{32398231891281432316875} a^{3} - \frac{1581016417131542477}{90751349835522219375} a^{2} - \frac{4523880329749271}{254205461724151875} a - \frac{6380649266219}{712060116874375} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3260665403.950658 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.3137112050000.2 x5, 10.2.49207360071276012500000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $89$ | 89.10.8.1 | $x^{10} - 13439 x^{5} + 61593696$ | $5$ | $2$ | $8$ | $D_5$ | $[\ ]_{5}^{2}$ |
| 89.10.8.1 | $x^{10} - 13439 x^{5} + 61593696$ | $5$ | $2$ | $8$ | $D_5$ | $[\ ]_{5}^{2}$ | |