Normalized defining polynomial
\( x^{20} + 46 x^{18} + 815 x^{16} + 7496 x^{14} + 39716 x^{12} + 125480 x^{10} + 234718 x^{8} + 246784 x^{6} + 128208 x^{4} + 23616 x^{2} + 64 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1209605983843492469982030335989252096=2^{56}\cdot 11^{8}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{14} + \frac{1}{16} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4064404132240} a^{18} - \frac{6130084315}{406440413224} a^{16} + \frac{41701126075}{812880826448} a^{14} + \frac{8630658076}{254025258265} a^{12} + \frac{11678265588}{50805051653} a^{10} - \frac{827970127}{5347900174} a^{8} + \frac{627744354579}{2032202066120} a^{6} + \frac{94320032976}{254025258265} a^{4} - \frac{192484491}{508050516530} a^{2} + \frac{19602753189}{254025258265}$, $\frac{1}{8128808264480} a^{19} - \frac{6130084315}{812880826448} a^{17} + \frac{41701126075}{1625761652896} a^{15} - \frac{219502625961}{2032202066120} a^{13} - \frac{4091989301}{406440413224} a^{11} - \frac{827970127}{10695800348} a^{9} + \frac{1643845387639}{4064404132240} a^{7} + \frac{442665324217}{1016101033060} a^{5} - \frac{63554435689}{254025258265} a^{3} - \frac{117211252538}{254025258265} a$
Class group and class number
$C_{1176}$, which has order $1176$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65638146.2726 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 48 conjugacy class representatives for t20n277 |
| Character table for t20n277 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.5.16386304.1, 10.10.2148087670243328.1, 10.0.1099820887164583936.1, 10.0.137477610895572992.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.8.25.69 | $x^{8} + 6 x^{4} + 4 x^{2} + 30$ | $8$ | $1$ | $25$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 3, 7/2, 4, 17/4]^{2}$ | |
| 2.8.25.69 | $x^{8} + 6 x^{4} + 4 x^{2} + 30$ | $8$ | $1$ | $25$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 3, 7/2, 4, 17/4]^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.3.2.1 | $x^{3} - 23$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 23.3.2.1 | $x^{3} - 23$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 23.3.2.1 | $x^{3} - 23$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 23.3.2.1 | $x^{3} - 23$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |