Normalized defining polynomial
\( x^{20} - x^{19} + 3 x^{18} - 11 x^{17} + 44 x^{16} + 300 x^{15} + 316 x^{14} - 1991 x^{13} - 80 x^{12} + 1958 x^{11} + 24000 x^{10} + 7237 x^{9} - 31618 x^{8} - 6930 x^{7} + 112662 x^{6} + 144019 x^{5} - 16152 x^{4} - 21866 x^{3} + 125333 x^{2} + 197892 x + 120577 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(120810895044353150938886048668570711901=101^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(101\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{101}(1,·)$, $\chi_{101}(69,·)$, $\chi_{101}(6,·)$, $\chi_{101}(65,·)$, $\chi_{101}(10,·)$, $\chi_{101}(14,·)$, $\chi_{101}(17,·)$, $\chi_{101}(84,·)$, $\chi_{101}(87,·)$, $\chi_{101}(36,·)$, $\chi_{101}(91,·)$, $\chi_{101}(95,·)$, $\chi_{101}(32,·)$, $\chi_{101}(100,·)$, $\chi_{101}(39,·)$, $\chi_{101}(41,·)$, $\chi_{101}(44,·)$, $\chi_{101}(57,·)$, $\chi_{101}(60,·)$, $\chi_{101}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{137} a^{16} + \frac{32}{137} a^{15} + \frac{55}{137} a^{14} - \frac{25}{137} a^{13} + \frac{60}{137} a^{12} - \frac{29}{137} a^{11} + \frac{29}{137} a^{10} - \frac{4}{137} a^{9} + \frac{29}{137} a^{8} + \frac{47}{137} a^{7} + \frac{33}{137} a^{6} - \frac{37}{137} a^{5} - \frac{12}{137} a^{4} + \frac{9}{137} a^{3} - \frac{43}{137} a^{2} - \frac{60}{137} a + \frac{59}{137}$, $\frac{1}{137} a^{17} - \frac{10}{137} a^{15} - \frac{4}{137} a^{14} + \frac{38}{137} a^{13} - \frac{31}{137} a^{12} - \frac{2}{137} a^{11} + \frac{27}{137} a^{10} + \frac{20}{137} a^{9} - \frac{59}{137} a^{8} + \frac{36}{137} a^{7} + \frac{3}{137} a^{6} - \frac{61}{137} a^{5} - \frac{18}{137} a^{4} - \frac{57}{137} a^{3} - \frac{54}{137} a^{2} + \frac{61}{137} a + \frac{30}{137}$, $\frac{1}{137} a^{18} + \frac{42}{137} a^{15} + \frac{40}{137} a^{14} - \frac{7}{137} a^{13} + \frac{50}{137} a^{12} + \frac{11}{137} a^{11} + \frac{36}{137} a^{10} + \frac{38}{137} a^{9} + \frac{52}{137} a^{8} + \frac{62}{137} a^{7} - \frac{5}{137} a^{6} + \frac{23}{137} a^{5} - \frac{40}{137} a^{4} + \frac{36}{137} a^{3} + \frac{42}{137} a^{2} - \frac{22}{137} a + \frac{42}{137}$, $\frac{1}{1702944503900739822645157359537520171634168375827091} a^{19} - \frac{4706001448249966422037222583900545776686781759510}{1702944503900739822645157359537520171634168375827091} a^{18} + \frac{2619246499171055380215762982873959720167958590618}{1702944503900739822645157359537520171634168375827091} a^{17} - \frac{2367452929034828184713596065259410472424943348358}{1702944503900739822645157359537520171634168375827091} a^{16} - \frac{514469708060388436879747926938869215046995497604990}{1702944503900739822645157359537520171634168375827091} a^{15} - \frac{320743368417835206425661984178435353904278905834007}{1702944503900739822645157359537520171634168375827091} a^{14} - \frac{365419644232726948062329832852717563364935154610784}{1702944503900739822645157359537520171634168375827091} a^{13} + \frac{165835714214323341103209366196098988773482340892080}{1702944503900739822645157359537520171634168375827091} a^{12} - \frac{287469315074357243527805007529216181238916483201949}{1702944503900739822645157359537520171634168375827091} a^{11} + \frac{665075394630126663083710659065992854667434461713089}{1702944503900739822645157359537520171634168375827091} a^{10} - \frac{371884245462220023259139902574544901263984369379065}{1702944503900739822645157359537520171634168375827091} a^{9} + \frac{338335990917246473404383541704894215777669016838059}{1702944503900739822645157359537520171634168375827091} a^{8} - \frac{223502389903375918344389151150941367443460005530899}{1702944503900739822645157359537520171634168375827091} a^{7} - \frac{298634127146833656602598905534298363734786028692032}{1702944503900739822645157359537520171634168375827091} a^{6} + \frac{202889874120114986373476528898422765909443510153523}{1702944503900739822645157359537520171634168375827091} a^{5} + \frac{445478317647467557888276042122156116555610825387687}{1702944503900739822645157359537520171634168375827091} a^{4} + \frac{367323576372529537645215299945853037132244506234380}{1702944503900739822645157359537520171634168375827091} a^{3} + \frac{187914247209720508447705668221634605533154974178239}{1702944503900739822645157359537520171634168375827091} a^{2} - \frac{367615006781511950090116834515780710552718539208368}{1702944503900739822645157359537520171634168375827091} a + \frac{181145827312838811031973508414133938566638119253641}{1702944503900739822645157359537520171634168375827091}$
Class group and class number
$C_{5}\times C_{25}$, which has order $125$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 224544554.426 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{101}) \), 4.0.1030301.1, 5.5.104060401.1, 10.10.1093685272684360901.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | $20$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 101 | Data not computed | ||||||