Normalized defining polynomial
\( x^{20} - x^{19} - 10 x^{18} + 21 x^{17} + 89 x^{16} - 320 x^{15} - 659 x^{14} + 4179 x^{13} + 3070 x^{12} - 49039 x^{11} + 15269 x^{10} - 539429 x^{9} + 371470 x^{8} + 5562249 x^{7} - 9648419 x^{6} - 51536320 x^{5} + 157668929 x^{4} + 409230591 x^{3} - 2143588810 x^{2} - 2357947691 x + 25937424601 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(120158054683860237850976148859242769=11^{18}\cdot 43^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(473=11\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{473}(128,·)$, $\chi_{473}(1,·)$, $\chi_{473}(130,·)$, $\chi_{473}(259,·)$, $\chi_{473}(388,·)$, $\chi_{473}(257,·)$, $\chi_{473}(343,·)$, $\chi_{473}(386,·)$, $\chi_{473}(216,·)$, $\chi_{473}(85,·)$, $\chi_{473}(214,·)$, $\chi_{473}(87,·)$, $\chi_{473}(472,·)$, $\chi_{473}(345,·)$, $\chi_{473}(42,·)$, $\chi_{473}(171,·)$, $\chi_{473}(300,·)$, $\chi_{473}(173,·)$, $\chi_{473}(302,·)$, $\chi_{473}(431,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{167959} a^{11} - \frac{1}{11} a^{10} + \frac{1}{11} a^{9} - \frac{1}{11} a^{8} + \frac{1}{11} a^{7} - \frac{1}{11} a^{6} + \frac{1}{11} a^{5} - \frac{1}{11} a^{4} + \frac{1}{11} a^{3} - \frac{1}{11} a^{2} + \frac{1}{11} a - \frac{3232}{15269}$, $\frac{1}{1847549} a^{12} - \frac{1}{1847549} a^{11} - \frac{32}{121} a^{10} + \frac{43}{121} a^{9} - \frac{54}{121} a^{8} - \frac{56}{121} a^{7} + \frac{45}{121} a^{6} - \frac{34}{121} a^{5} + \frac{23}{121} a^{4} - \frac{12}{121} a^{3} + \frac{1}{121} a^{2} - \frac{49039}{167959} a + \frac{3070}{15269}$, $\frac{1}{20323039} a^{13} - \frac{1}{20323039} a^{12} - \frac{10}{20323039} a^{11} - \frac{320}{1331} a^{10} - \frac{659}{1331} a^{9} + \frac{186}{1331} a^{8} + \frac{408}{1331} a^{7} + \frac{208}{1331} a^{6} + \frac{628}{1331} a^{5} - \frac{254}{1331} a^{4} + \frac{1}{1331} a^{3} - \frac{49039}{1847549} a^{2} + \frac{3070}{167959} a + \frac{4179}{15269}$, $\frac{1}{223553429} a^{14} - \frac{1}{223553429} a^{13} - \frac{10}{223553429} a^{12} + \frac{21}{223553429} a^{11} + \frac{3334}{14641} a^{10} + \frac{186}{14641} a^{9} + \frac{7063}{14641} a^{8} + \frac{5532}{14641} a^{7} + \frac{4621}{14641} a^{6} - \frac{6909}{14641} a^{5} + \frac{1}{14641} a^{4} - \frac{49039}{20323039} a^{3} + \frac{3070}{1847549} a^{2} + \frac{4179}{167959} a - \frac{659}{15269}$, $\frac{1}{2459087719} a^{15} - \frac{1}{2459087719} a^{14} - \frac{10}{2459087719} a^{13} + \frac{21}{2459087719} a^{12} + \frac{89}{2459087719} a^{11} + \frac{58750}{161051} a^{10} + \frac{65627}{161051} a^{9} - \frac{67673}{161051} a^{8} - \frac{10020}{161051} a^{7} - \frac{50832}{161051} a^{6} + \frac{1}{161051} a^{5} - \frac{49039}{223553429} a^{4} + \frac{3070}{20323039} a^{3} + \frac{4179}{1847549} a^{2} - \frac{659}{167959} a - \frac{320}{15269}$, $\frac{1}{27049964909} a^{16} - \frac{1}{27049964909} a^{15} - \frac{10}{27049964909} a^{14} + \frac{21}{27049964909} a^{13} + \frac{89}{27049964909} a^{12} - \frac{320}{27049964909} a^{11} + \frac{709831}{1771561} a^{10} + \frac{415480}{1771561} a^{9} + \frac{634184}{1771561} a^{8} + \frac{110219}{1771561} a^{7} + \frac{1}{1771561} a^{6} - \frac{49039}{2459087719} a^{5} + \frac{3070}{223553429} a^{4} + \frac{4179}{20323039} a^{3} - \frac{659}{1847549} a^{2} - \frac{320}{167959} a + \frac{89}{15269}$, $\frac{1}{297549613999} a^{17} - \frac{1}{297549613999} a^{16} - \frac{10}{297549613999} a^{15} + \frac{21}{297549613999} a^{14} + \frac{89}{297549613999} a^{13} - \frac{320}{297549613999} a^{12} - \frac{659}{297549613999} a^{11} + \frac{9273285}{19487171} a^{10} + \frac{2405745}{19487171} a^{9} - \frac{6976025}{19487171} a^{8} + \frac{1}{19487171} a^{7} - \frac{49039}{27049964909} a^{6} + \frac{3070}{2459087719} a^{5} + \frac{4179}{223553429} a^{4} - \frac{659}{20323039} a^{3} - \frac{320}{1847549} a^{2} + \frac{89}{167959} a + \frac{21}{15269}$, $\frac{1}{3273045753989} a^{18} - \frac{1}{3273045753989} a^{17} - \frac{10}{3273045753989} a^{16} + \frac{21}{3273045753989} a^{15} + \frac{89}{3273045753989} a^{14} - \frac{320}{3273045753989} a^{13} - \frac{659}{3273045753989} a^{12} + \frac{4179}{3273045753989} a^{11} - \frac{75542939}{214358881} a^{10} - \frac{26463196}{214358881} a^{9} + \frac{1}{214358881} a^{8} - \frac{49039}{297549613999} a^{7} + \frac{3070}{27049964909} a^{6} + \frac{4179}{2459087719} a^{5} - \frac{659}{223553429} a^{4} - \frac{320}{20323039} a^{3} + \frac{89}{1847549} a^{2} + \frac{21}{167959} a - \frac{10}{15269}$, $\frac{1}{36003503293879} a^{19} - \frac{1}{36003503293879} a^{18} - \frac{10}{36003503293879} a^{17} + \frac{21}{36003503293879} a^{16} + \frac{89}{36003503293879} a^{15} - \frac{320}{36003503293879} a^{14} - \frac{659}{36003503293879} a^{13} + \frac{4179}{36003503293879} a^{12} + \frac{3070}{36003503293879} a^{11} + \frac{830972328}{2357947691} a^{10} + \frac{1}{2357947691} a^{9} - \frac{49039}{3273045753989} a^{8} + \frac{3070}{297549613999} a^{7} + \frac{4179}{27049964909} a^{6} - \frac{659}{2459087719} a^{5} - \frac{320}{223553429} a^{4} + \frac{89}{20323039} a^{3} + \frac{21}{1847549} a^{2} - \frac{10}{167959} a - \frac{1}{15269}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}\times C_{30}$, which has order $1200$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{49039}{36003503293879} a^{19} + \frac{49039}{36003503293879} a^{18} + \frac{490390}{36003503293879} a^{17} - \frac{1029819}{36003503293879} a^{16} - \frac{4364471}{36003503293879} a^{15} + \frac{15692480}{36003503293879} a^{14} + \frac{32316701}{36003503293879} a^{13} - \frac{204933981}{36003503293879} a^{12} - \frac{150549730}{36003503293879} a^{11} + \frac{3070}{2357947691} a^{10} - \frac{49039}{2357947691} a^{9} + \frac{2404823521}{3273045753989} a^{8} - \frac{150549730}{297549613999} a^{7} - \frac{204933981}{27049964909} a^{6} + \frac{32316701}{2459087719} a^{5} + \frac{15692480}{223553429} a^{4} - \frac{4364471}{20323039} a^{3} - \frac{1029819}{1847549} a^{2} + \frac{490390}{167959} a + \frac{49039}{15269} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26746667.8364 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{473}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}, \sqrt{-43})\), \(\Q(\zeta_{11})^+\), 10.0.31512565339032283.3, 10.10.346638218729355113.1, \(\Q(\zeta_{11})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |