Normalized defining polynomial
\( x^{20} + 168 x^{18} + 11277 x^{16} + 397532 x^{14} + 8089180 x^{12} + 98149160 x^{10} + 709808115 x^{8} + 2994937638 x^{6} + 7062713024 x^{4} + 8447581138 x^{2} + 3939040643 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11994903175031178875336744508402610208768=2^{36}\cdot 83^{9}\cdot 983^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{83} a^{10} + \frac{2}{83} a^{8} - \frac{11}{83} a^{6} - \frac{38}{83} a^{4}$, $\frac{1}{83} a^{11} + \frac{2}{83} a^{9} - \frac{11}{83} a^{7} - \frac{38}{83} a^{5}$, $\frac{1}{83} a^{12} - \frac{15}{83} a^{8} - \frac{16}{83} a^{6} - \frac{7}{83} a^{4}$, $\frac{1}{83} a^{13} - \frac{15}{83} a^{9} - \frac{16}{83} a^{7} - \frac{7}{83} a^{5}$, $\frac{1}{6889} a^{14} + \frac{2}{6889} a^{12} - \frac{11}{6889} a^{10} - \frac{1449}{6889} a^{8} - \frac{31}{83} a^{6} - \frac{28}{83} a^{4}$, $\frac{1}{6889} a^{15} + \frac{2}{6889} a^{13} - \frac{11}{6889} a^{11} - \frac{1449}{6889} a^{9} - \frac{31}{83} a^{7} - \frac{28}{83} a^{5}$, $\frac{1}{571787} a^{16} + \frac{2}{571787} a^{14} - \frac{2833}{571787} a^{12} - \frac{204}{571787} a^{10} - \frac{3226}{6889} a^{8} + \frac{3256}{6889} a^{6} - \frac{18}{83} a^{4} - \frac{12}{83} a^{2}$, $\frac{1}{571787} a^{17} + \frac{2}{571787} a^{15} - \frac{2833}{571787} a^{13} - \frac{204}{571787} a^{11} - \frac{3226}{6889} a^{9} + \frac{3256}{6889} a^{7} - \frac{18}{83} a^{5} - \frac{12}{83} a^{3}$, $\frac{1}{238539908944068290177598315962} a^{18} + \frac{48997476434079394145129}{238539908944068290177598315962} a^{16} + \frac{169104507415553676050061}{119269954472034145088799157981} a^{14} + \frac{525228591417504139061632424}{119269954472034145088799157981} a^{12} + \frac{776509700489847833220151}{1436987403277519820346977807} a^{10} + \frac{45278165455942296293670159}{1436987403277519820346977807} a^{8} + \frac{2891403718920433772573769}{34626202488614935430047658} a^{6} - \frac{2186906826301989949885351}{34626202488614935430047658} a^{4} - \frac{113262206093899273985687}{417183162513432956988526} a^{2} + \frac{2237725014291276311471}{5026303162812445264922}$, $\frac{1}{238539908944068290177598315962} a^{19} + \frac{48997476434079394145129}{238539908944068290177598315962} a^{17} + \frac{169104507415553676050061}{119269954472034145088799157981} a^{15} + \frac{525228591417504139061632424}{119269954472034145088799157981} a^{13} + \frac{776509700489847833220151}{1436987403277519820346977807} a^{11} + \frac{45278165455942296293670159}{1436987403277519820346977807} a^{9} + \frac{2891403718920433772573769}{34626202488614935430047658} a^{7} - \frac{2186906826301989949885351}{34626202488614935430047658} a^{5} - \frac{113262206093899273985687}{417183162513432956988526} a^{3} + \frac{2237725014291276311471}{5026303162812445264922} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{122668}$, which has order $1962688$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 272473.726744 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n807 are not computed |
| Character table for t20n807 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||