Normalized defining polynomial
\( x^{20} - 6 x^{19} + 30 x^{18} - 100 x^{17} + 285 x^{16} - 662 x^{15} + 1266 x^{14} - 1564 x^{13} + 1560 x^{12} - 2105 x^{11} + 4112 x^{10} - 6402 x^{9} + 7316 x^{8} - 5906 x^{7} + 3515 x^{6} - 1610 x^{5} + 643 x^{4} - 206 x^{3} + 52 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(119897383984074477569580078125=5^{15}\cdot 211^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{25516101531478115409321351451} a^{19} - \frac{12177086231828137377936589368}{25516101531478115409321351451} a^{18} - \frac{1795886439481918976250142874}{25516101531478115409321351451} a^{17} - \frac{4960720617200039774199711122}{25516101531478115409321351451} a^{16} - \frac{7071753334127443275331373048}{25516101531478115409321351451} a^{15} + \frac{9765403735421310316775727616}{25516101531478115409321351451} a^{14} + \frac{3383712797970198364488693613}{25516101531478115409321351451} a^{13} - \frac{10985577691958565546903529735}{25516101531478115409321351451} a^{12} - \frac{12599525052281458634747210398}{25516101531478115409321351451} a^{11} + \frac{8674999449501835925423432014}{25516101531478115409321351451} a^{10} + \frac{9548837358304190202320704006}{25516101531478115409321351451} a^{9} - \frac{7206491978568027765746015099}{25516101531478115409321351451} a^{8} - \frac{2946610583004055390317011633}{25516101531478115409321351451} a^{7} + \frac{1476860195309978483876733857}{25516101531478115409321351451} a^{6} + \frac{11970822316026096268449393313}{25516101531478115409321351451} a^{5} + \frac{4648168046211173251592696726}{25516101531478115409321351451} a^{4} + \frac{10977686059705535399602748956}{25516101531478115409321351451} a^{3} - \frac{9850140078950667210128931362}{25516101531478115409321351451} a^{2} + \frac{2075118909842730547089526399}{25516101531478115409321351451} a - \frac{1323503824124489186123005508}{25516101531478115409321351451}$
Class group and class number
$C_{11}$, which has order $11$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{22571724679903564918010168613}{25516101531478115409321351451} a^{19} - \frac{132722803818518972420401894986}{25516101531478115409321351451} a^{18} + \frac{660937943351632777917301132446}{25516101531478115409321351451} a^{17} - \frac{2176146872863253327523718729372}{25516101531478115409321351451} a^{16} + \frac{6163329292154191758054522144711}{25516101531478115409321351451} a^{15} - \frac{14174929960968660456578164693884}{25516101531478115409321351451} a^{14} + \frac{26796452293966799546893305398306}{25516101531478115409321351451} a^{13} - \frac{31906818803566828777577110046632}{25516101531478115409321351451} a^{12} + \frac{31046902150396972333023124704088}{25516101531478115409321351451} a^{11} - \frac{43398464575003232288069918660935}{25516101531478115409321351451} a^{10} + \frac{87256184742595427106872339821160}{25516101531478115409321351451} a^{9} - \frac{133495151015631064907691141219906}{25516101531478115409321351451} a^{8} + \frac{147991147804119656376907617596320}{25516101531478115409321351451} a^{7} - \frac{113874615454068408178373279753586}{25516101531478115409321351451} a^{6} + \frac{63934280704684599669302949635295}{25516101531478115409321351451} a^{5} - \frac{27365860800414060534303526867827}{25516101531478115409321351451} a^{4} + \frac{10512196511645567247864687679765}{25516101531478115409321351451} a^{3} - \frac{3021577645136384335687359283858}{25516101531478115409321351451} a^{2} + \frac{652196580119000971664184978598}{25516101531478115409321351451} a - \frac{72204200234697746687966845982}{25516101531478115409321351451} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 454775.127492 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:C_4$ (as 20T25):
| A solvable group of order 100 |
| The 40 conjugacy class representatives for $C_5\times C_5:C_4$ |
| Character table for $C_5\times C_5:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.10.6194123253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 211 | Data not computed | ||||||