Normalized defining polynomial
\( x^{20} - 10 x^{19} + 75 x^{18} - 264 x^{17} - 312 x^{16} + 10716 x^{15} - 19644 x^{14} + 118446 x^{13} + 1040871 x^{12} - 2263018 x^{11} + 2579485 x^{10} + 65471640 x^{9} + 46232796 x^{8} - 146915028 x^{7} - 380644878 x^{6} + 280326630 x^{5} + 1833189930 x^{4} - 4763924676 x^{3} + 6350854338 x^{2} - 5069452068 x + 1918665666 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(118905689229936268771490188271616000000000000000=2^{28}\cdot 3^{18}\cdot 5^{15}\cdot 7^{17}\cdot 11^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $225.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5}$, $\frac{1}{66} a^{16} + \frac{1}{66} a^{15} + \frac{2}{33} a^{14} + \frac{1}{11} a^{13} - \frac{1}{2} a^{12} - \frac{5}{22} a^{11} - \frac{2}{11} a^{10} + \frac{5}{11} a^{9} + \frac{2}{11} a^{8} + \frac{4}{33} a^{7} - \frac{1}{3} a^{6} - \frac{5}{33} a^{5} + \frac{3}{11} a^{4} - \frac{3}{11} a^{3} - \frac{1}{11} a - \frac{5}{11}$, $\frac{1}{132} a^{17} - \frac{1}{132} a^{16} - \frac{3}{44} a^{15} + \frac{3}{44} a^{14} + \frac{7}{44} a^{13} + \frac{17}{44} a^{12} + \frac{17}{44} a^{11} - \frac{15}{44} a^{10} + \frac{3}{22} a^{9} - \frac{4}{33} a^{8} + \frac{7}{33} a^{7} - \frac{9}{22} a^{6} - \frac{1}{22} a^{5} + \frac{1}{11} a^{4} - \frac{5}{22} a^{3} - \frac{1}{22} a^{2} - \frac{3}{22} a - \frac{1}{22}$, $\frac{1}{25212} a^{18} + \frac{79}{25212} a^{17} - \frac{1}{132} a^{16} + \frac{2003}{25212} a^{15} + \frac{4909}{25212} a^{14} - \frac{2575}{8404} a^{13} - \frac{625}{8404} a^{12} + \frac{51}{8404} a^{11} - \frac{1823}{4202} a^{10} - \frac{2257}{6303} a^{9} - \frac{2731}{6303} a^{8} + \frac{1015}{12606} a^{7} + \frac{4679}{12606} a^{6} - \frac{1270}{6303} a^{5} - \frac{415}{4202} a^{4} - \frac{73}{4202} a^{3} + \frac{1699}{4202} a^{2} - \frac{2053}{4202} a + \frac{875}{2101}$, $\frac{1}{136665241911260358177209604117655760134197883518428879455037374626705042731855677626778529388} a^{19} + \frac{1235332555847494883823553909281109925733067481069929789933133948315959959799757869351859}{136665241911260358177209604117655760134197883518428879455037374626705042731855677626778529388} a^{18} - \frac{66969447304980197606793882938657917814468234228030534811177067114849884427744707534417986}{34166310477815089544302401029413940033549470879607219863759343656676260682963919406694632347} a^{17} + \frac{488991462958870883256741742528216929791452423541704702169655484412741270555011463576908667}{68332620955630179088604802058827880067098941759214439727518687313352521365927838813389264694} a^{16} - \frac{969797719816178210047204401123231382137457219006509588866425196874662209437615784956065461}{22777540318543393029534934019609293355699647253071479909172895771117507121975946271129754898} a^{15} + \frac{8014156270044952987425423576842581406753656634407348435961166239387179517611251156419864572}{34166310477815089544302401029413940033549470879607219863759343656676260682963919406694632347} a^{14} - \frac{3569991357679596662515065678656321829530178304742518276044237072765208146158968133655692627}{11388770159271696514767467009804646677849823626535739954586447885558753560987973135564877449} a^{13} - \frac{124849853642401944655561580794892886416949503482721427773943271378960563618621301877799356}{11388770159271696514767467009804646677849823626535739954586447885558753560987973135564877449} a^{12} + \frac{9645608633724052185449380372586973139056922597825473400752622709228720954587809176560162385}{45555080637086786059069868039218586711399294506142959818345791542235014243951892542259509796} a^{11} - \frac{31547333266449616989410322373025961170542469016604841372623480400536840006726220088329029549}{136665241911260358177209604117655760134197883518428879455037374626705042731855677626778529388} a^{10} - \frac{3061432641829145205204253267204484016342720222342323604686580617204651060688358828751105393}{6212056450511834462600436550802534551554449250837676338865335210304774669629803528489933154} a^{9} - \frac{23002765002166763165577603759641524503144684456979087273931799600566881702380921738024022343}{68332620955630179088604802058827880067098941759214439727518687313352521365927838813389264694} a^{8} - \frac{32924607512636994119707430974859831080015830452763014817735451347375640520301660695469174881}{68332620955630179088604802058827880067098941759214439727518687313352521365927838813389264694} a^{7} - \frac{11061456354334913759781672780903448196385188565858908550393909691293897371511906297592904683}{22777540318543393029534934019609293355699647253071479909172895771117507121975946271129754898} a^{6} - \frac{12701402427515199436488882933868464043820593397563334080882748384959425584459884420306763530}{34166310477815089544302401029413940033549470879607219863759343656676260682963919406694632347} a^{5} + \frac{8030721978727568355922790961953080088720595551357508759217369009744165019612353778116909579}{22777540318543393029534934019609293355699647253071479909172895771117507121975946271129754898} a^{4} - \frac{775786780962653431572351530623230273881649462610639870714624813502158825869487658381120662}{11388770159271696514767467009804646677849823626535739954586447885558753560987973135564877449} a^{3} + \frac{6431616916573121868497621485019848731765551234580112371211599129653746615531384467020387}{11388770159271696514767467009804646677849823626535739954586447885558753560987973135564877449} a^{2} - \frac{568374302553019752773404600062263662816066246248285177976947748243403404130931120019792491}{2070685483503944820866812183600844850518149750279225446288445070101591556543267842829977718} a - \frac{4469919139318874748297089652770732742665258352287803716105469378343718562156775233723648145}{22777540318543393029534934019609293355699647253071479909172895771117507121975946271129754898}$
Class group and class number
$C_{2}\times C_{20}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 742303713446840.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{15}) \), 4.0.1386000.2, 5.1.388962000.4, 10.2.145239779946240000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ |
| 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $3$ | 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.10.8.1 | $x^{10} - 7 x^{5} + 147$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 7.10.9.1 | $x^{10} - 7$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |