Normalized defining polynomial
\( x^{20} - 4 x^{19} + 12 x^{18} - 32 x^{17} + 91 x^{16} - 126 x^{15} + 349 x^{14} - 606 x^{13} + 1765 x^{12} - 3140 x^{11} + 5896 x^{10} - 8688 x^{9} + 11729 x^{8} - 12648 x^{7} + 11673 x^{6} - 7892 x^{5} + 4643 x^{4} - 688 x^{3} - 849 x^{2} + 428 x + 463 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(118337802465720092063736102912=2^{15}\cdot 3^{10}\cdot 11^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{398} a^{18} - \frac{21}{199} a^{17} + \frac{6}{199} a^{16} + \frac{39}{199} a^{15} - \frac{135}{398} a^{14} + \frac{115}{398} a^{13} - \frac{49}{199} a^{12} - \frac{64}{199} a^{11} - \frac{143}{398} a^{10} + \frac{10}{199} a^{9} - \frac{63}{398} a^{8} + \frac{193}{398} a^{7} - \frac{129}{398} a^{6} + \frac{39}{398} a^{5} - \frac{39}{398} a^{4} - \frac{99}{199} a^{3} - \frac{15}{398} a^{2} + \frac{77}{398} a - \frac{133}{398}$, $\frac{1}{694274620752943753130183059164526646} a^{19} - \frac{37214049614815177275424647350774}{347137310376471876565091529582263323} a^{18} - \frac{82489366436496672092962696814999730}{347137310376471876565091529582263323} a^{17} - \frac{173557692501317977329327978914070849}{694274620752943753130183059164526646} a^{16} - \frac{46261300185262460231698986859220141}{694274620752943753130183059164526646} a^{15} - \frac{172796119216921953340234194165558165}{347137310376471876565091529582263323} a^{14} - \frac{125744429049185323759790699652889928}{347137310376471876565091529582263323} a^{13} + \frac{131000519448751509235198870712569843}{347137310376471876565091529582263323} a^{12} - \frac{162813274426622882916958468713697395}{347137310376471876565091529582263323} a^{11} - \frac{5200613638907262828720742281450386}{347137310376471876565091529582263323} a^{10} - \frac{116851712017890869383331743331591603}{347137310376471876565091529582263323} a^{9} + \frac{70824053583115598329316699401158445}{347137310376471876565091529582263323} a^{8} - \frac{26529995322809597947535323086129148}{347137310376471876565091529582263323} a^{7} + \frac{23466256668591371369596575764417351}{694274620752943753130183059164526646} a^{6} + \frac{313283565735175272767354820404058917}{694274620752943753130183059164526646} a^{5} + \frac{53444541304024476610091936216190885}{694274620752943753130183059164526646} a^{4} - \frac{101194204579198045795145637758096307}{347137310376471876565091529582263323} a^{3} + \frac{39665731059330833616621063439779401}{694274620752943753130183059164526646} a^{2} - \frac{121258514532291615090628349184954588}{347137310376471876565091529582263323} a + \frac{326130228344692737315730132712961649}{694274620752943753130183059164526646}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125582.779517 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times D_4$ (as 20T12):
| A solvable group of order 40 |
| The 25 conjugacy class representatives for $C_5\times D_4$ |
| Character table for $C_5\times D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{33}) \), 4.0.95832.1, \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{33})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.15.13 | $x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||