Normalized defining polynomial
\( x^{20} + 820 x^{18} + 259530 x^{16} + 42172600 x^{14} + 3900904000 x^{12} + 212532192000 x^{10} + 6734386899000 x^{8} + 115706894580000 x^{6} + 893242030590000 x^{4} + 1647738725400000 x^{2} + 804017088900000 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(117844480851402406822671795818334357815296000000000000000=2^{55}\cdot 5^{15}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $636.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3280=2^{4}\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3280}(1,·)$, $\chi_{3280}(961,·)$, $\chi_{3280}(1289,·)$, $\chi_{3280}(1281,·)$, $\chi_{3280}(1357,·)$, $\chi_{3280}(1041,·)$, $\chi_{3280}(1173,·)$, $\chi_{3280}(933,·)$, $\chi_{3280}(1369,·)$, $\chi_{3280}(329,·)$, $\chi_{3280}(2213,·)$, $\chi_{3280}(1253,·)$, $\chi_{3280}(1917,·)$, $\chi_{3280}(2157,·)$, $\chi_{3280}(2237,·)$, $\chi_{3280}(1841,·)$, $\chi_{3280}(373,·)$, $\chi_{3280}(1609,·)$, $\chi_{3280}(2169,·)$, $\chi_{3280}(3197,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{30} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{30} a^{5} - \frac{1}{3} a$, $\frac{1}{90} a^{6} - \frac{1}{90} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{90} a^{7} - \frac{1}{90} a^{5} + \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{900} a^{8} + \frac{1}{9} a^{2}$, $\frac{1}{8100} a^{9} + \frac{1}{270} a^{7} + \frac{1}{270} a^{5} - \frac{8}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{332100} a^{10} - \frac{1}{2700} a^{8} - \frac{1}{270} a^{6} + \frac{11}{810} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{332100} a^{11} - \frac{1}{270} a^{7} + \frac{1}{405} a^{5} - \frac{2}{27} a^{3}$, $\frac{1}{9963000} a^{12} + \frac{1}{996300} a^{10} - \frac{1}{4050} a^{8} - \frac{1}{2430} a^{6} - \frac{13}{2430} a^{4} - \frac{7}{27} a^{2}$, $\frac{1}{29889000} a^{13} + \frac{1}{2988900} a^{11} + \frac{1}{24300} a^{9} - \frac{14}{3645} a^{7} - \frac{47}{3645} a^{5} + \frac{2}{27} a^{3} - \frac{2}{9} a$, $\frac{1}{269001000} a^{14} + \frac{1}{26900100} a^{12} + \frac{11}{8966700} a^{10} - \frac{43}{164025} a^{8} - \frac{31}{6561} a^{6} - \frac{52}{3645} a^{4} + \frac{26}{81} a^{2}$, $\frac{1}{807003000} a^{15} + \frac{1}{80700300} a^{13} + \frac{19}{13450050} a^{11} + \frac{71}{1968300} a^{9} + \frac{181}{39366} a^{7} - \frac{43}{10935} a^{5} + \frac{5}{243} a^{3} + \frac{2}{9} a$, $\frac{1}{15906029130000} a^{16} + \frac{869}{795301456500} a^{14} + \frac{16439}{530200971000} a^{12} + \frac{36011}{79530145650} a^{10} + \frac{788351}{3879519300} a^{8} - \frac{4844}{7184295} a^{6} - \frac{8611}{1596510} a^{4} - \frac{24178}{53217} a^{2} - \frac{64}{657}$, $\frac{1}{47718087390000} a^{17} + \frac{869}{2385904369500} a^{15} + \frac{16439}{1590602913000} a^{13} + \frac{36011}{238590436950} a^{11} - \frac{162127}{2909639475} a^{9} - \frac{169339}{43105770} a^{7} - \frac{79567}{4789530} a^{5} - \frac{26149}{159651} a^{3} - \frac{283}{1971} a$, $\frac{1}{94589363110616877805212870000} a^{18} - \frac{1263240188856193}{47294681555308438902606435000} a^{16} + \frac{419583035468795699}{788244692588473981710107250} a^{14} - \frac{23264800403607764231}{945893631106168778052128700} a^{12} - \frac{1228301756308777506581}{945893631106168778052128700} a^{10} - \frac{41086630056992383}{2563397374271460103122300} a^{8} + \frac{22987438995744528329}{4747032174576777968745} a^{6} - \frac{25835585596590062653}{3164688116384518645830} a^{4} + \frac{16536013463509667939}{35163201293161318287} a^{2} + \frac{120288821680312682}{434113596211868127}$, $\frac{1}{283768089331850633415638610000} a^{19} - \frac{1263240188856193}{141884044665925316707819305000} a^{17} + \frac{419583035468795699}{2364734077765421945130321750} a^{15} - \frac{23264800403607764231}{2837680893318506334156386100} a^{13} - \frac{1019130265263711071957}{709420223329626583539096525} a^{11} - \frac{41086630056992383}{7690192122814380309366900} a^{9} - \frac{129841128474317534777}{28482193047460667812470} a^{7} + \frac{7335354451583789527}{1898812869830711187498} a^{5} - \frac{12115483886473628443}{105489603879483954861} a^{3} + \frac{409697885821558100}{1302340788635604381} a$
Class group and class number
$C_{2}\times C_{2}\times C_{342927572}$, which has order $1371710288$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 126615231021.771 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.0.430336000.10, 5.5.2825761.1, 10.10.817656343461990400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | $20$ | $20$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $41$ | 41.10.9.8 | $x^{10} + 318816$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.8 | $x^{10} + 318816$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |