Normalized defining polynomial
\( x^{20} + 15 x^{18} + 225 x^{16} + 5124 x^{14} + 79368 x^{12} + 760574 x^{10} + 4742038 x^{8} + 19589641 x^{6} + 52211443 x^{4} + 81835911 x^{2} + 57592921 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11753236087178400090650813750280454144=2^{20}\cdot 11^{18}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(748=2^{2}\cdot 11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{748}(1,·)$, $\chi_{748}(67,·)$, $\chi_{748}(69,·)$, $\chi_{748}(135,·)$, $\chi_{748}(137,·)$, $\chi_{748}(339,·)$, $\chi_{748}(203,·)$, $\chi_{748}(273,·)$, $\chi_{748}(579,·)$, $\chi_{748}(477,·)$, $\chi_{748}(543,·)$, $\chi_{748}(35,·)$, $\chi_{748}(101,·)$, $\chi_{748}(171,·)$, $\chi_{748}(237,·)$, $\chi_{748}(239,·)$, $\chi_{748}(645,·)$, $\chi_{748}(305,·)$, $\chi_{748}(307,·)$, $\chi_{748}(373,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{533723356495195186001142913} a^{18} - \frac{95714155658541307217902952}{533723356495195186001142913} a^{16} + \frac{56873173138044685022512188}{533723356495195186001142913} a^{14} + \frac{196696569135555438962502513}{533723356495195186001142913} a^{12} + \frac{79560431147580873600540571}{533723356495195186001142913} a^{10} + \frac{83093352088794854230870049}{533723356495195186001142913} a^{8} - \frac{248037622067946592027609447}{533723356495195186001142913} a^{6} + \frac{239958713920775336417716215}{533723356495195186001142913} a^{4} - \frac{86533044969803554827305117}{533723356495195186001142913} a^{2} + \frac{201141465901434909381401158}{533723356495195186001142913}$, $\frac{1}{4050426552442036266562673566757} a^{19} - \frac{795343515333499368448920843322}{4050426552442036266562673566757} a^{17} + \frac{1384001536565179161985986085597}{4050426552442036266562673566757} a^{15} + \frac{7135100203573092856977360382}{4050426552442036266562673566757} a^{13} - \frac{980370245450525975810498990610}{4050426552442036266562673566757} a^{11} - \frac{1139949996121648122444210392119}{4050426552442036266562673566757} a^{9} + \frac{1752499465108153044235725716845}{4050426552442036266562673566757} a^{7} - \frac{247941402056344986154113738330}{4050426552442036266562673566757} a^{5} - \frac{1559092457367434941864165753990}{4050426552442036266562673566757} a^{3} - \frac{574618913479423780413849516143}{4050426552442036266562673566757} a$
Class group and class number
$C_{5}\times C_{9020}$, which has order $45100$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 281202.490766 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-187}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-17}) \), \(\Q(\sqrt{11}, \sqrt{-17})\), \(\Q(\zeta_{11})^+\), 10.0.3347948534700187.1, \(\Q(\zeta_{44})^+\), 10.0.311663572684817408.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 17 | Data not computed | ||||||