Normalized defining polynomial
\( x^{20} - 9 x^{19} + 45 x^{18} - 163 x^{17} + 464 x^{16} - 1081 x^{15} + 2121 x^{14} - 3545 x^{13} + 5100 x^{12} - 6329 x^{11} + 6805 x^{10} - 6329 x^{9} + 5100 x^{8} - 3545 x^{7} + 2121 x^{6} - 1081 x^{5} + 464 x^{4} - 163 x^{3} + 45 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1172076768078459528609792=2^{16}\cdot 3^{10}\cdot 13^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{211} a^{17} - \frac{38}{211} a^{16} + \frac{63}{211} a^{15} - \frac{45}{211} a^{14} - \frac{20}{211} a^{13} - \frac{103}{211} a^{12} + \frac{36}{211} a^{11} - \frac{105}{211} a^{10} + \frac{30}{211} a^{9} + \frac{30}{211} a^{8} - \frac{105}{211} a^{7} + \frac{36}{211} a^{6} - \frac{103}{211} a^{5} - \frac{20}{211} a^{4} - \frac{45}{211} a^{3} + \frac{63}{211} a^{2} - \frac{38}{211} a + \frac{1}{211}$, $\frac{1}{211} a^{18} + \frac{96}{211} a^{16} + \frac{28}{211} a^{15} - \frac{42}{211} a^{14} - \frac{19}{211} a^{13} - \frac{80}{211} a^{12} - \frac{3}{211} a^{11} + \frac{49}{211} a^{10} - \frac{96}{211} a^{9} - \frac{20}{211} a^{8} + \frac{55}{211} a^{7} - \frac{1}{211} a^{6} + \frac{75}{211} a^{5} + \frac{39}{211} a^{4} + \frac{41}{211} a^{3} + \frac{35}{211} a^{2} + \frac{34}{211} a + \frac{38}{211}$, $\frac{1}{211} a^{19} + \frac{89}{211} a^{16} + \frac{29}{211} a^{15} + \frac{81}{211} a^{14} - \frac{59}{211} a^{13} - \frac{32}{211} a^{12} - \frac{31}{211} a^{11} + \frac{67}{211} a^{10} + \frac{54}{211} a^{9} - \frac{82}{211} a^{8} - \frac{49}{211} a^{7} - \frac{5}{211} a^{6} + \frac{10}{211} a^{5} + \frac{62}{211} a^{4} - \frac{76}{211} a^{3} + \frac{105}{211} a^{2} + \frac{99}{211} a - \frac{96}{211}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{292}{211} a^{19} + \frac{2131}{211} a^{18} - \frac{8807}{211} a^{17} + \frac{26688}{211} a^{16} - \frac{62440}{211} a^{15} + \frac{115627}{211} a^{14} - \frac{173327}{211} a^{13} + \frac{202027}{211} a^{12} - \frac{174078}{211} a^{11} + \frac{78447}{211} a^{10} + \frac{39781}{211} a^{9} - \frac{133287}{211} a^{8} + \frac{154012}{211} a^{7} - \frac{121493}{211} a^{6} + \frac{64941}{211} a^{5} - \frac{23660}{211} a^{4} + \frac{2432}{211} a^{3} + \frac{2025}{211} a^{2} - \frac{1799}{211} a + \frac{611}{211} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19012.2439561 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:F_5$ (as 20T19):
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_2^2:F_5$ |
| Character table for $C_2^2:F_5$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.117.1, 5.1.35152.1, 10.0.300266134272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |