Normalized defining polynomial
\( x^{20} - 9 x^{19} + 37 x^{18} - 102 x^{17} + 247 x^{16} - 562 x^{15} + 1098 x^{14} - 1852 x^{13} + 2918 x^{12} - 4196 x^{11} + 5369 x^{10} - 7216 x^{9} + 10494 x^{8} - 11957 x^{7} + 7403 x^{6} + 22 x^{5} - 3025 x^{4} + 1089 x^{3} + 726 x^{2} - 605 x + 121 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11705855471743857652328881=11^{18}\cdot 1451^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 1451$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{33} a^{15} + \frac{13}{33} a^{14} + \frac{5}{11} a^{13} + \frac{8}{33} a^{12} + \frac{16}{33} a^{11} + \frac{10}{33} a^{10} + \frac{3}{11} a^{9} + \frac{7}{33} a^{8} + \frac{14}{33} a^{7} + \frac{2}{11} a^{6} + \frac{1}{33} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{33} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{2}{33} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{33} a^{17} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{2}{33} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{1419} a^{18} + \frac{4}{473} a^{17} - \frac{10}{1419} a^{16} + \frac{13}{1419} a^{15} + \frac{70}{1419} a^{14} - \frac{133}{473} a^{13} + \frac{42}{473} a^{12} - \frac{202}{473} a^{11} - \frac{118}{473} a^{10} - \frac{587}{1419} a^{9} - \frac{219}{473} a^{8} - \frac{601}{1419} a^{7} - \frac{158}{473} a^{6} + \frac{41}{129} a^{5} - \frac{22}{129} a^{4} - \frac{34}{129} a^{3} - \frac{1}{129} a^{2} + \frac{10}{129} a + \frac{16}{129}$, $\frac{1}{917025810244802709} a^{19} - \frac{177921434883155}{917025810244802709} a^{18} - \frac{10982198461689094}{917025810244802709} a^{17} - \frac{139439825998442}{27788660916509173} a^{16} - \frac{3217530151540130}{305675270081600903} a^{15} - \frac{283389067925488573}{917025810244802709} a^{14} - \frac{16664245718297055}{305675270081600903} a^{13} - \frac{190446178003174087}{917025810244802709} a^{12} + \frac{397901366715832849}{917025810244802709} a^{11} + \frac{283889672873856854}{917025810244802709} a^{10} - \frac{212121346356008129}{917025810244802709} a^{9} - \frac{73191860669398216}{305675270081600903} a^{8} - \frac{398058738938752202}{917025810244802709} a^{7} - \frac{147285069389298101}{917025810244802709} a^{6} + \frac{99224185744845087}{305675270081600903} a^{5} - \frac{28033972873825216}{83365982749527519} a^{4} - \frac{29660695649005918}{83365982749527519} a^{3} + \frac{23806901802600314}{83365982749527519} a^{2} - \frac{28498807413542516}{83365982749527519} a - \frac{10194401572212719}{27788660916509173}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{123572754562405451}{305675270081600903} a^{19} + \frac{3053726851997467814}{917025810244802709} a^{18} - \frac{11407950702588984073}{917025810244802709} a^{17} + \frac{29263442814103862098}{917025810244802709} a^{16} - \frac{69750873428080209043}{917025810244802709} a^{15} + \frac{156341738437999986647}{917025810244802709} a^{14} - \frac{290665401819069232295}{917025810244802709} a^{13} + \frac{471149312360882065693}{917025810244802709} a^{12} - \frac{244435331588338852330}{305675270081600903} a^{11} + \frac{1013352113552741132992}{917025810244802709} a^{10} - \frac{1244099890905519258056}{917025810244802709} a^{9} + \frac{1760727251372928824251}{917025810244802709} a^{8} - \frac{2588469435211128045596}{917025810244802709} a^{7} + \frac{229361057593751860648}{83365982749527519} a^{6} - \frac{911410759635637385447}{917025810244802709} a^{5} - \frac{57924441639799081162}{83365982749527519} a^{4} + \frac{19276248769879161755}{27788660916509173} a^{3} + \frac{4742458042331526455}{83365982749527519} a^{2} - \frac{20201043422844773818}{83365982749527519} a + \frac{1928051947934108454}{27788660916509173} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 177120.841849 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T86):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\zeta_{11})^+\), 10.10.3421382099641.1, \(\Q(\zeta_{11})\), 10.0.311034736331.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1451 | Data not computed | ||||||