Normalized defining polynomial
\( x^{20} - x^{19} - 17 x^{18} - 988 x^{17} + 7927 x^{16} - 27301 x^{15} + 211942 x^{14} - 3467410 x^{13} + 31434424 x^{12} - 135265045 x^{11} + 446289007 x^{10} - 2329750576 x^{9} + 12569556082 x^{8} - 34794231463 x^{7} + 19864173718 x^{6} + 272079548399 x^{5} + 76901734366 x^{4} - 750849440890 x^{3} - 115389084975 x^{2} + 808179039000 x + 671391534375 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11687418886731512831139064930618445074696899279531241=11^{18}\cdot 71^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $401.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(781=11\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{781}(1,·)$, $\chi_{781}(259,·)$, $\chi_{781}(196,·)$, $\chi_{781}(585,·)$, $\chi_{781}(522,·)$, $\chi_{781}(780,·)$, $\chi_{781}(14,·)$, $\chi_{781}(401,·)$, $\chi_{781}(147,·)$, $\chi_{781}(85,·)$, $\chi_{781}(279,·)$, $\chi_{781}(409,·)$, $\chi_{781}(285,·)$, $\chi_{781}(496,·)$, $\chi_{781}(372,·)$, $\chi_{781}(502,·)$, $\chi_{781}(696,·)$, $\chi_{781}(634,·)$, $\chi_{781}(380,·)$, $\chi_{781}(767,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{15} a^{5} - \frac{1}{15} a$, $\frac{1}{45} a^{6} - \frac{1}{9} a^{4} + \frac{4}{45} a^{2}$, $\frac{1}{45} a^{7} + \frac{1}{45} a^{5} + \frac{4}{45} a^{3} - \frac{2}{15} a$, $\frac{1}{135} a^{8} + \frac{1}{45} a^{5} - \frac{7}{45} a^{4} - \frac{1}{9} a^{3} + \frac{4}{27} a^{2} + \frac{4}{45} a$, $\frac{1}{405} a^{9} - \frac{1}{135} a^{7} + \frac{1}{135} a^{5} - \frac{37}{405} a^{3} + \frac{4}{45} a$, $\frac{1}{2025} a^{10} + \frac{1}{675} a^{6} - \frac{1}{45} a^{5} - \frac{4}{81} a^{4} + \frac{1}{9} a^{3} + \frac{32}{675} a^{2} - \frac{4}{45} a$, $\frac{1}{6075} a^{11} + \frac{1}{1215} a^{9} - \frac{1}{405} a^{8} - \frac{19}{2025} a^{7} + \frac{1}{135} a^{6} - \frac{8}{1215} a^{5} + \frac{2}{135} a^{4} + \frac{631}{6075} a^{3} - \frac{8}{405} a^{2} - \frac{4}{45} a$, $\frac{1}{6075} a^{12} - \frac{1}{6075} a^{10} - \frac{4}{2025} a^{8} - \frac{58}{6075} a^{6} + \frac{1}{45} a^{5} + \frac{286}{6075} a^{4} - \frac{1}{9} a^{3} - \frac{8}{225} a^{2} + \frac{4}{45} a$, $\frac{1}{18225} a^{13} + \frac{1}{18225} a^{11} + \frac{1}{6075} a^{10} + \frac{13}{18225} a^{9} + \frac{4}{1215} a^{8} + \frac{53}{18225} a^{7} + \frac{11}{2025} a^{6} - \frac{559}{18225} a^{5} - \frac{134}{1215} a^{4} - \frac{1129}{18225} a^{3} + \frac{2641}{6075} a^{2} + \frac{4}{45} a - \frac{1}{3}$, $\frac{1}{273375} a^{14} + \frac{1}{273375} a^{13} + \frac{1}{273375} a^{12} - \frac{14}{273375} a^{11} - \frac{47}{273375} a^{10} + \frac{163}{273375} a^{9} + \frac{113}{273375} a^{8} + \frac{1043}{273375} a^{7} - \frac{2269}{273375} a^{6} + \frac{2336}{273375} a^{5} - \frac{25189}{273375} a^{4} - \frac{19729}{273375} a^{3} + \frac{7091}{18225} a^{2} - \frac{28}{135} a + \frac{4}{9}$, $\frac{1}{12301875} a^{15} - \frac{1}{4100625} a^{14} - \frac{26}{4100625} a^{13} + \frac{23}{1366875} a^{12} + \frac{173}{4100625} a^{11} + \frac{304}{1366875} a^{10} + \frac{8161}{12301875} a^{9} + \frac{9722}{4100625} a^{8} - \frac{21337}{4100625} a^{7} - \frac{512}{1366875} a^{6} - \frac{120086}{4100625} a^{5} - \frac{19072}{1366875} a^{4} + \frac{298216}{12301875} a^{3} + \frac{23468}{164025} a^{2} + \frac{2731}{6075} a + \frac{25}{81}$, $\frac{1}{12301875} a^{16} + \frac{1}{4100625} a^{14} + \frac{7}{1366875} a^{13} - \frac{53}{820125} a^{12} + \frac{112}{1366875} a^{11} + \frac{2014}{12301875} a^{10} - \frac{284}{1366875} a^{9} - \frac{931}{4100625} a^{8} - \frac{8719}{1366875} a^{7} - \frac{13889}{4100625} a^{6} + \frac{24827}{1366875} a^{5} + \frac{1250362}{12301875} a^{4} + \frac{83957}{1366875} a^{3} + \frac{17153}{54675} a^{2} + \frac{311}{2025} a - \frac{5}{27}$, $\frac{1}{184528125} a^{17} - \frac{7}{184528125} a^{15} - \frac{44}{61509375} a^{14} + \frac{209}{12301875} a^{13} - \frac{368}{20503125} a^{12} - \frac{8801}{184528125} a^{11} + \frac{4601}{20503125} a^{10} + \frac{74672}{184528125} a^{9} - \frac{117002}{61509375} a^{8} - \frac{165394}{61509375} a^{7} + \frac{31547}{20503125} a^{6} - \frac{2723033}{184528125} a^{5} + \frac{1945927}{20503125} a^{4} - \frac{5047247}{36905625} a^{3} - \frac{867029}{2460375} a^{2} - \frac{4292}{18225} a - \frac{32}{243}$, $\frac{1}{52590515625} a^{18} - \frac{23}{52590515625} a^{17} + \frac{1148}{52590515625} a^{16} - \frac{49}{2767921875} a^{15} + \frac{7997}{17530171875} a^{14} - \frac{377099}{17530171875} a^{13} + \frac{770456}{10518103125} a^{12} - \frac{313943}{52590515625} a^{11} + \frac{504782}{2103620625} a^{10} + \frac{62826473}{52590515625} a^{9} - \frac{3840266}{5843390625} a^{8} + \frac{172006613}{17530171875} a^{7} - \frac{63014492}{52590515625} a^{6} + \frac{1006725547}{52590515625} a^{5} + \frac{8085149291}{52590515625} a^{4} - \frac{123250928}{10518103125} a^{3} - \frac{269712608}{701206875} a^{2} - \frac{745763}{5194125} a + \frac{16177}{69255}$, $\frac{1}{217641114055040977361485380441609365562600816618307429998046875} a^{19} + \frac{411821448094595813397283994603243299762092675845126}{72547038018346992453828460147203121854200272206102476666015625} a^{18} - \frac{75198824764868243089421871569137507047285841653560476}{43528222811008195472297076088321873112520163323661485999609375} a^{17} - \frac{1312890956364601607788298038949106906510563499274693711}{72547038018346992453828460147203121854200272206102476666015625} a^{16} + \frac{128168409182412338528075669684480519854403463521710079}{43528222811008195472297076088321873112520163323661485999609375} a^{15} + \frac{90220100810799442258454103932305949816268504826421019968}{72547038018346992453828460147203121854200272206102476666015625} a^{14} + \frac{3505172628026812985534370774082114019697605214871577802433}{217641114055040977361485380441609365562600816618307429998046875} a^{13} - \frac{1807443051133565019468302662723515742273512063589769030101}{72547038018346992453828460147203121854200272206102476666015625} a^{12} + \frac{15161941173404192823680625737550331560533955997012218048337}{217641114055040977361485380441609365562600816618307429998046875} a^{11} + \frac{16723920660096508709564082831202797453651908543651963486351}{72547038018346992453828460147203121854200272206102476666015625} a^{10} - \frac{2879347827015991741806969585456305396407634776513505437406}{217641114055040977361485380441609365562600816618307429998046875} a^{9} + \frac{10206788023201522041287688731844549695014945734656608158584}{2901881520733879698153138405888124874168010888244099066640625} a^{8} + \frac{870506023874837614752383596479390755037841901135004770609407}{217641114055040977361485380441609365562600816618307429998046875} a^{7} + \frac{136767611026551017624836761029640280048910135862934691516086}{14509407603669398490765692029440624370840054441220495333203125} a^{6} + \frac{2012889031815434782561283185878584929659941399158987746372628}{217641114055040977361485380441609365562600816618307429998046875} a^{5} + \frac{2209538708126058039748406179172997693482603250353643352686887}{72547038018346992453828460147203121854200272206102476666015625} a^{4} + \frac{3274324661568070816505843946214759332935978115206705259876977}{43528222811008195472297076088321873112520163323661485999609375} a^{3} + \frac{1204211306553264930420176968311962657674200766148792789614532}{2901881520733879698153138405888124874168010888244099066640625} a^{2} - \frac{3005942497240162826619022919977363210757392168545805645438}{21495418672102812578912136339912036104948228801808141234375} a - \frac{3678629546768942998976999671683266196495542173646393}{550106683866994563759747571079002843376794083219658125}$
Class group and class number
$C_{5}\times C_{203052185}$, which has order $1015260925$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70496491595348.39 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| $71$ | 71.10.9.9 | $x^{10} + 9088$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 71.10.9.9 | $x^{10} + 9088$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |