Normalized defining polynomial
\( x^{20} + 880 x^{18} + 202400 x^{16} + 20823000 x^{14} + 1127002800 x^{12} + 34241740720 x^{10} + 601169648200 x^{8} + 6083933240000 x^{6} + 34121257060000 x^{4} + 95835622256000 x^{2} + 103893806112800 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(116599917138248602348421120000000000000000000000000000000000=2^{55}\cdot 5^{34}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $898.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4400=2^{4}\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4400}(1,·)$, $\chi_{4400}(4361,·)$, $\chi_{4400}(1509,·)$, $\chi_{4400}(1229,·)$, $\chi_{4400}(589,·)$, $\chi_{4400}(81,·)$, $\chi_{4400}(469,·)$, $\chi_{4400}(1241,·)$, $\chi_{4400}(2201,·)$, $\chi_{4400}(3429,·)$, $\chi_{4400}(549,·)$, $\chi_{4400}(2789,·)$, $\chi_{4400}(3441,·)$, $\chi_{4400}(2281,·)$, $\chi_{4400}(2669,·)$, $\chi_{4400}(2749,·)$, $\chi_{4400}(2161,·)$, $\chi_{4400}(1521,·)$, $\chi_{4400}(3721,·)$, $\chi_{4400}(3709,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{220} a^{10}$, $\frac{1}{220} a^{11}$, $\frac{1}{440} a^{12}$, $\frac{1}{440} a^{13}$, $\frac{1}{7480} a^{14} + \frac{1}{7480} a^{12} - \frac{2}{935} a^{10} - \frac{1}{34} a^{8} - \frac{1}{34} a^{6} - \frac{1}{34} a^{4} + \frac{8}{17} a^{2} + \frac{8}{17}$, $\frac{1}{7480} a^{15} + \frac{1}{7480} a^{13} - \frac{2}{935} a^{11} - \frac{1}{34} a^{9} - \frac{1}{34} a^{7} - \frac{1}{34} a^{5} + \frac{8}{17} a^{3} + \frac{8}{17} a$, $\frac{1}{165356718691120} a^{16} - \frac{1227660999}{82678359345560} a^{14} + \frac{8536742011}{10334794918195} a^{12} - \frac{29618817383}{20669589836390} a^{10} + \frac{13854561603}{187905362149} a^{8} + \frac{380329267}{1888496102} a^{6} + \frac{8763298753}{187905362149} a^{4} - \frac{70990474455}{187905362149} a^{2} - \frac{6274209640}{187905362149}$, $\frac{1}{29929566083092720} a^{17} - \frac{1715779776}{110035169423135} a^{15} - \frac{71669102368}{110035169423135} a^{13} - \frac{457968470357}{440140677692540} a^{11} + \frac{527964489423}{8002557776228} a^{9} + \frac{2701553631}{20106929086} a^{7} - \frac{9237385306}{2000639444057} a^{5} + \frac{925598027015}{2000639444057} a^{3} - \frac{6748760733810}{34010870548969} a$, $\frac{1}{25237872969642581091345813321039579440} a^{18} - \frac{653251244226636451921}{630946824241064527283645333025989486} a^{16} + \frac{670427270030594073809966961084667}{12618936484821290545672906660519789720} a^{14} - \frac{1265860948074382623288812452703049}{1261893648482129054567290666051978972} a^{12} - \frac{2611491858588253965862157941090595}{1261893648482129054567290666051978972} a^{10} + \frac{1857297390104754840248889293976048}{28679401101866569421983878773908613} a^{8} - \frac{4445737003054473587730704294156385}{28679401101866569421983878773908613} a^{6} - \frac{2398002924181064208858023462162630}{28679401101866569421983878773908613} a^{4} + \frac{4489543072113563012669734628877336}{28679401101866569421983878773908613} a^{2} + \frac{61979606440751292004449585868}{875412872069429181709467927533}$, $\frac{1}{4568055007505307177533592211108163878640} a^{19} - \frac{653251244226636451921}{114201375187632679438339805277704096966} a^{17} + \frac{101891842923677309680811892045468007}{2284027503752653588766796105554081939320} a^{15} - \frac{54042402013355047293556813045426997}{51909715994378490653790820580774589530} a^{13} - \frac{12121238692929405072940365871246786}{285503437969081698595849513194260242415} a^{11} + \frac{980841803429654934448330736737390645}{20763886397751396261516328232309835812} a^{9} + \frac{88340560679455015718687727033195010}{5190971599437849065379082058077458953} a^{7} + \frac{893411525610592368913109013534629929}{5190971599437849065379082058077458953} a^{5} - \frac{2082358642987236223751686620860825857}{5190971599437849065379082058077458953} a^{3} + \frac{72051814615444398117288929744170}{158449729844566681889413694883473} a$
Class group and class number
$C_{6}\times C_{8243193030}$, which has order $49459158180$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59880888363.52121 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.6195200.5, 5.5.5719140625.3, 10.10.1071794405000000000000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{20}$ | $20$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||