Normalized defining polynomial
\( x^{20} - 16 x^{18} + 82 x^{16} + 13 x^{14} - 999 x^{12} + 308 x^{10} + 7923 x^{8} + 12402 x^{6} + 4714 x^{4} - 1313 x^{2} + 101 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1160968955369998535166956051501=101^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{38} a^{12} + \frac{4}{19} a^{10} - \frac{1}{38} a^{8} + \frac{5}{38} a^{6} - \frac{1}{2} a^{5} + \frac{9}{19} a^{4} + \frac{4}{19} a^{2} - \frac{9}{19}$, $\frac{1}{38} a^{13} + \frac{4}{19} a^{11} - \frac{1}{38} a^{9} + \frac{5}{38} a^{7} - \frac{1}{2} a^{6} + \frac{9}{19} a^{5} + \frac{4}{19} a^{3} - \frac{9}{19} a$, $\frac{1}{76} a^{14} - \frac{2}{19} a^{10} - \frac{3}{38} a^{8} + \frac{35}{76} a^{6} + \frac{4}{19} a^{4} - \frac{1}{2} a^{3} + \frac{13}{76} a^{2} + \frac{11}{76}$, $\frac{1}{76} a^{15} - \frac{2}{19} a^{11} - \frac{3}{38} a^{9} - \frac{3}{76} a^{7} + \frac{4}{19} a^{5} - \frac{1}{2} a^{4} - \frac{25}{76} a^{3} - \frac{27}{76} a - \frac{1}{2}$, $\frac{1}{76} a^{16} - \frac{9}{38} a^{10} - \frac{11}{76} a^{8} - \frac{5}{19} a^{6} - \frac{1}{2} a^{5} - \frac{33}{76} a^{4} + \frac{37}{76} a^{2} - \frac{1}{2} a + \frac{2}{19}$, $\frac{1}{152} a^{17} - \frac{1}{152} a^{14} - \frac{1}{76} a^{13} - \frac{17}{76} a^{11} - \frac{15}{76} a^{10} + \frac{29}{152} a^{9} + \frac{3}{76} a^{8} - \frac{15}{76} a^{7} - \frac{73}{152} a^{6} - \frac{31}{152} a^{5} - \frac{27}{76} a^{4} - \frac{17}{152} a^{3} - \frac{13}{152} a^{2} + \frac{11}{38} a - \frac{11}{152}$, $\frac{1}{1471888229032} a^{18} - \frac{1427556399}{735944114516} a^{16} - \frac{1}{152} a^{15} - \frac{226840687}{183986028629} a^{14} - \frac{9273179189}{735944114516} a^{12} - \frac{15}{76} a^{11} + \frac{17202381553}{1471888229032} a^{10} + \frac{3}{76} a^{9} + \frac{29719545997}{183986028629} a^{8} + \frac{3}{152} a^{7} + \frac{698008082927}{1471888229032} a^{6} + \frac{11}{76} a^{5} - \frac{673971733355}{1471888229032} a^{4} - \frac{13}{152} a^{3} - \frac{83759586670}{183986028629} a^{2} - \frac{11}{152} a + \frac{205172358101}{735944114516}$, $\frac{1}{1471888229032} a^{19} - \frac{1427556399}{735944114516} a^{17} - \frac{1}{152} a^{16} - \frac{226840687}{183986028629} a^{15} - \frac{9273179189}{735944114516} a^{13} - \frac{1}{76} a^{12} + \frac{17202381553}{1471888229032} a^{11} + \frac{1}{76} a^{10} + \frac{29719545997}{183986028629} a^{9} - \frac{25}{152} a^{8} - \frac{37936031589}{1471888229032} a^{7} - \frac{33}{76} a^{6} + \frac{61972381161}{1471888229032} a^{5} - \frac{41}{152} a^{4} - \frac{83759586670}{183986028629} a^{3} + \frac{61}{152} a^{2} - \frac{162799699157}{735944114516} a + \frac{7}{38}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11240237.3489 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{101}) \), 4.0.1030301.1, 5.1.1030301.1 x5, 10.2.107213535210701.3 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.1030301.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $101$ | 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |