Normalized defining polynomial
\( x^{20} - 114 x^{18} + 6045 x^{16} - 156872 x^{14} + 3152130 x^{12} - 30018588 x^{10} + 301446370 x^{8} + 733055832 x^{6} + 10988455869 x^{4} + 224935514622 x^{2} + 1072100788929 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1150825008314476629127654256038421463040000000000=2^{40}\cdot 5^{10}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $252.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1640=2^{3}\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1640}(1,·)$, $\chi_{1640}(901,·)$, $\chi_{1640}(961,·)$, $\chi_{1640}(201,·)$, $\chi_{1640}(1419,·)$, $\chi_{1640}(1281,·)$, $\chi_{1640}(1261,·)$, $\chi_{1640}(1041,·)$, $\chi_{1640}(1179,·)$, $\chi_{1640}(1559,·)$, $\chi_{1640}(1499,·)$, $\chi_{1640}(1501,·)$, $\chi_{1640}(879,·)$, $\chi_{1640}(619,·)$, $\chi_{1640}(1581,·)$, $\chi_{1640}(1199,·)$, $\chi_{1640}(819,·)$, $\chi_{1640}(119,·)$, $\chi_{1640}(701,·)$, $\chi_{1640}(959,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{12} a^{4} + \frac{1}{6} a^{2} - \frac{1}{4}$, $\frac{1}{12} a^{5} - \frac{1}{12} a$, $\frac{1}{72} a^{6} + \frac{1}{72} a^{4} + \frac{7}{72} a^{2} - \frac{1}{8}$, $\frac{1}{72} a^{7} + \frac{1}{72} a^{5} - \frac{5}{72} a^{3} + \frac{1}{24} a$, $\frac{1}{144} a^{8} - \frac{1}{24} a^{4} + \frac{2}{9} a^{2} - \frac{3}{16}$, $\frac{1}{1296} a^{9} + \frac{1}{216} a^{7} + \frac{1}{108} a^{5} + \frac{13}{648} a^{3} - \frac{5}{144} a$, $\frac{1}{2592} a^{10} - \frac{1}{864} a^{8} - \frac{1}{432} a^{6} - \frac{23}{1296} a^{4} - \frac{1}{96} a^{2} + \frac{1}{32}$, $\frac{1}{5184} a^{11} - \frac{1}{5184} a^{10} - \frac{1}{5184} a^{9} - \frac{5}{1728} a^{8} - \frac{5}{864} a^{7} + \frac{1}{864} a^{6} + \frac{79}{2592} a^{5} + \frac{77}{2592} a^{4} - \frac{227}{5184} a^{3} - \frac{61}{576} a^{2} - \frac{277}{576} a - \frac{27}{64}$, $\frac{1}{15552} a^{12} + \frac{1}{7776} a^{10} + \frac{5}{5184} a^{8} - \frac{19}{3888} a^{6} - \frac{41}{15552} a^{4} - \frac{35}{864} a^{2} + \frac{3}{64}$, $\frac{1}{31104} a^{13} - \frac{1}{31104} a^{12} + \frac{1}{15552} a^{11} - \frac{1}{15552} a^{10} - \frac{1}{3456} a^{9} - \frac{5}{10368} a^{8} + \frac{53}{7776} a^{7} + \frac{19}{7776} a^{6} - \frac{1193}{31104} a^{5} - \frac{1255}{31104} a^{4} - \frac{137}{5184} a^{3} - \frac{109}{1728} a^{2} + \frac{67}{1152} a + \frac{13}{128}$, $\frac{1}{31104} a^{14} - \frac{1}{31104} a^{12} - \frac{1}{10368} a^{10} - \frac{85}{31104} a^{8} - \frac{173}{31104} a^{6} - \frac{43}{3456} a^{4} - \frac{1}{384} a^{2} + \frac{3}{128}$, $\frac{1}{186624} a^{15} - \frac{1}{62208} a^{14} + \frac{1}{186624} a^{13} - \frac{1}{62208} a^{12} + \frac{13}{186624} a^{11} + \frac{11}{62208} a^{10} + \frac{53}{186624} a^{9} + \frac{19}{62208} a^{8} - \frac{397}{186624} a^{7} + \frac{253}{62208} a^{6} - \frac{157}{186624} a^{5} - \frac{83}{62208} a^{4} + \frac{143}{2304} a^{3} - \frac{1615}{6912} a^{2} - \frac{137}{2304} a + \frac{59}{256}$, $\frac{1}{13623552} a^{16} + \frac{107}{6811776} a^{14} + \frac{95}{6811776} a^{12} - \frac{713}{6811776} a^{10} + \frac{607}{425736} a^{8} - \frac{12911}{6811776} a^{6} - \frac{65557}{2270592} a^{4} - \frac{11465}{252288} a^{2} - \frac{5513}{18688}$, $\frac{1}{27247104} a^{17} - \frac{1}{27247104} a^{16} + \frac{17}{6811776} a^{15} + \frac{7}{851472} a^{14} + \frac{11}{6811776} a^{13} + \frac{31}{3405888} a^{12} + \frac{161}{2270592} a^{11} + \frac{233}{3405888} a^{10} + \frac{3215}{13623552} a^{9} + \frac{25547}{13623552} a^{8} - \frac{31385}{6811776} a^{7} - \frac{7283}{1702944} a^{6} + \frac{115007}{6811776} a^{5} - \frac{293}{21024} a^{4} - \frac{34243}{756864} a^{3} + \frac{4721}{42048} a^{2} - \frac{51223}{336384} a + \frac{3323}{37376}$, $\frac{1}{424964984153488589006959104} a^{18} - \frac{734207043769087607}{141654994717829529668986368} a^{16} + \frac{1293180401102293679}{129247257954224023420608} a^{14} + \frac{1370459886307254660161}{53120623019186073625869888} a^{12} + \frac{3874515833276453587747}{70827497358914764834493184} a^{10} + \frac{31380385901424368138921}{70827497358914764834493184} a^{8} + \frac{81310648886440190307623}{13280155754796518406467472} a^{6} - \frac{23523480524085521905079}{2951145723288115201437216} a^{4} - \frac{355829585375788168987115}{5246481285845538135888384} a^{2} + \frac{8168131656841230990071}{64771373899327631307264}$, $\frac{1}{10864654784868089266551916452864} a^{19} - \frac{1}{849929968306977178013918208} a^{18} - \frac{39522779186390568092141}{3621551594956029755517305484288} a^{17} - \frac{9663594845035647727}{283309989435659059337972736} a^{16} + \frac{4215176104869083655577}{6608670793715382765542528256} a^{15} - \frac{6646816284329064295}{516989031816896093682432} a^{14} - \frac{38925178858548826320596585}{2716163696217022316637979113216} a^{13} - \frac{4222606541769184105417}{212482492076744294503479552} a^{12} + \frac{52703105817871760570576617}{1810775797478014877758652742144} a^{11} - \frac{23786306450337521752357}{141654994717829529668986368} a^{10} - \frac{600989185348828943314108183}{1810775797478014877758652742144} a^{9} - \frac{50387567754159424329473}{141654994717829529668986368} a^{8} + \frac{12429241659240198479545994971}{2716163696217022316637979113216} a^{7} + \frac{1272385511106082585223303}{212482492076744294503479552} a^{6} + \frac{449674103194300893520019407}{301795966246335812959775457024} a^{5} + \frac{808365723946838979021779}{23609165786304921611497728} a^{4} + \frac{10901560962159165987443269441}{134131540553927027982122425344} a^{3} - \frac{1464264044051925532288249}{10492962571691076271776768} a^{2} + \frac{529702459727423085816291641}{1655944945110210222001511424} a - \frac{31566651840614820403349}{129542747798655262614528}$
Class group and class number
$C_{2}\times C_{2}\times C_{382484080}$, which has order $1529936320$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6411717617.202166 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-410}) \), \(\Q(\sqrt{82}) \), \(\Q(\sqrt{-5}, \sqrt{82})\), 5.5.2825761.1, 10.0.25551760733187200000.2, 10.0.33523910081941606400000.1, 10.10.10727651226221314048.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{20}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $41$ | 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |