Normalized defining polynomial
\( x^{20} - 2 x^{19} - 15 x^{18} + 26 x^{17} + 174 x^{16} - 248 x^{15} - 203 x^{14} + 342 x^{13} + 4287 x^{12} + 906 x^{11} + 20385 x^{10} - 40518 x^{9} + 179119 x^{8} - 154430 x^{7} + 766773 x^{6} - 477652 x^{5} + 2036322 x^{4} - 264554 x^{3} + 4014037 x^{2} + 734442 x + 3286971 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(115082500831447662912765425603842146304=2^{30}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(328=2^{3}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{328}(1,·)$, $\chi_{328}(195,·)$, $\chi_{328}(201,·)$, $\chi_{328}(139,·)$, $\chi_{328}(305,·)$, $\chi_{328}(291,·)$, $\chi_{328}(81,·)$, $\chi_{328}(83,·)$, $\chi_{328}(25,·)$, $\chi_{328}(283,·)$, $\chi_{328}(163,·)$, $\chi_{328}(209,·)$, $\chi_{328}(297,·)$, $\chi_{328}(107,·)$, $\chi_{328}(113,·)$, $\chi_{328}(51,·)$, $\chi_{328}(59,·)$, $\chi_{328}(105,·)$, $\chi_{328}(57,·)$, $\chi_{328}(187,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{7}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} - \frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{2}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{747} a^{17} - \frac{13}{249} a^{16} + \frac{107}{747} a^{15} - \frac{25}{747} a^{14} - \frac{12}{83} a^{13} + \frac{1}{747} a^{12} + \frac{55}{747} a^{11} - \frac{6}{83} a^{10} - \frac{35}{249} a^{9} + \frac{59}{747} a^{8} - \frac{226}{747} a^{7} + \frac{40}{83} a^{6} + \frac{295}{747} a^{5} - \frac{179}{747} a^{4} - \frac{73}{249} a^{3} + \frac{155}{747} a^{2} + \frac{16}{249} a - \frac{14}{83}$, $\frac{1}{747} a^{18} - \frac{1}{249} a^{16} + \frac{9}{83} a^{15} - \frac{29}{249} a^{14} + \frac{35}{249} a^{13} - \frac{8}{83} a^{12} + \frac{11}{83} a^{11} - \frac{53}{747} a^{10} + \frac{38}{249} a^{9} + \frac{4}{249} a^{7} - \frac{8}{249} a^{6} + \frac{68}{249} a^{5} - \frac{76}{249} a^{4} + \frac{82}{249} a^{3} + \frac{283}{747} a^{2} - \frac{82}{249} a + \frac{35}{83}$, $\frac{1}{1199733975647164170577154064678816134748452807817} a^{19} + \frac{378553869817960077299728937686714280540339647}{1199733975647164170577154064678816134748452807817} a^{18} - \frac{572850606286930052267048493513954422844897946}{1199733975647164170577154064678816134748452807817} a^{17} + \frac{1550499463027882077605044406155973733669031291}{1199733975647164170577154064678816134748452807817} a^{16} + \frac{11195980689836168691188544046910041115747875811}{1199733975647164170577154064678816134748452807817} a^{15} - \frac{68637402965154172157319347969996120489495587421}{1199733975647164170577154064678816134748452807817} a^{14} - \frac{64377956369540716943376312907841709382638871690}{1199733975647164170577154064678816134748452807817} a^{13} + \frac{178286494084504073180193451331087765266864882900}{1199733975647164170577154064678816134748452807817} a^{12} + \frac{32505628008376100703940310961730952870418055462}{399911325215721390192384688226272044916150935939} a^{11} - \frac{66736182097804846627259203168310220847081710535}{1199733975647164170577154064678816134748452807817} a^{10} - \frac{88757449145155391768577707755448229730821008279}{1199733975647164170577154064678816134748452807817} a^{9} - \frac{112710125555908246681056458705178129462026435881}{1199733975647164170577154064678816134748452807817} a^{8} + \frac{385310667373788928845694850198111370909355475572}{1199733975647164170577154064678816134748452807817} a^{7} - \frac{258635245736892414950805696240606323693474184967}{1199733975647164170577154064678816134748452807817} a^{6} + \frac{351941181970475074985404174578559134913406309158}{1199733975647164170577154064678816134748452807817} a^{5} - \frac{304653884249444757074697927864518915044949089861}{1199733975647164170577154064678816134748452807817} a^{4} - \frac{542281764313471658045406201397191906531699473722}{1199733975647164170577154064678816134748452807817} a^{3} + \frac{7962369923438704577375749091687418609186897659}{133303775071907130064128229408757348305383645313} a^{2} - \frac{117414094897390475200895864682688931548487098610}{399911325215721390192384688226272044916150935939} a - \frac{791562115058039703839885999027076115478920712}{1826079110574070274851071635736402031580597881}$
Class group and class number
$C_{31310}$, which has order $31310$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5104264.63655 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-82}) \), \(\Q(\sqrt{-2}, \sqrt{41})\), 5.5.2825761.1, 10.10.327381934393961.1, 10.0.261650029907836928.1, 10.0.10727651226221314048.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $41$ | 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |