Normalized defining polynomial
\( x^{20} - 4 x^{19} + 13 x^{18} - 30 x^{17} + 66 x^{16} - 130 x^{15} + 243 x^{14} - 404 x^{13} + 622 x^{12} - 866 x^{11} + 1112 x^{10} - 1264 x^{9} + 1267 x^{8} - 1094 x^{7} + 842 x^{6} - 554 x^{5} + 309 x^{4} - 138 x^{3} + 56 x^{2} - 12 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(114840714180513475067904=2^{20}\cdot 3^{14}\cdot 389^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 389$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{228} a^{18} - \frac{1}{19} a^{17} - \frac{2}{57} a^{16} - \frac{41}{114} a^{15} - \frac{7}{114} a^{14} + \frac{1}{3} a^{13} - \frac{1}{12} a^{12} - \frac{25}{57} a^{11} - \frac{1}{76} a^{10} - \frac{5}{114} a^{9} - \frac{53}{228} a^{8} - \frac{25}{114} a^{7} + \frac{10}{57} a^{6} + \frac{7}{57} a^{5} + \frac{7}{38} a^{4} - \frac{31}{114} a^{3} - \frac{5}{228} a^{2} + \frac{1}{19} a - \frac{21}{76}$, $\frac{1}{3701715432} a^{19} - \frac{561297}{1233905144} a^{18} - \frac{54718304}{462714429} a^{17} + \frac{45109247}{616952572} a^{16} + \frac{66966899}{925428858} a^{15} + \frac{699908975}{1850857716} a^{14} + \frac{34977623}{194827128} a^{13} - \frac{868493615}{3701715432} a^{12} - \frac{390200993}{1233905144} a^{11} - \frac{152975415}{1233905144} a^{10} - \frac{432350261}{1233905144} a^{9} - \frac{432661201}{1233905144} a^{8} - \frac{558583255}{1850857716} a^{7} + \frac{74171653}{154238143} a^{6} - \frac{486078935}{1850857716} a^{5} - \frac{39183423}{154238143} a^{4} - \frac{980728951}{3701715432} a^{3} - \frac{450161933}{3701715432} a^{2} + \frac{143114501}{3701715432} a + \frac{495251041}{3701715432}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1621212583}{3701715432} a^{19} + \frac{2140440355}{1233905144} a^{18} - \frac{878849936}{154238143} a^{17} + \frac{24374215633}{1850857716} a^{16} - \frac{8967204709}{308476286} a^{15} + \frac{105844956655}{1850857716} a^{14} - \frac{20825470313}{194827128} a^{13} + \frac{219595724935}{1233905144} a^{12} - \frac{338439884833}{1233905144} a^{11} + \frac{1413383214839}{3701715432} a^{10} - \frac{1811922885575}{3701715432} a^{9} + \frac{2056971412081}{3701715432} a^{8} - \frac{1027457362619}{1850857716} a^{7} + \frac{220113651248}{462714429} a^{6} - \frac{663045336275}{1850857716} a^{5} + \frac{105621675101}{462714429} a^{4} - \frac{151638431485}{1233905144} a^{3} + \frac{194426597383}{3701715432} a^{2} - \frac{67326387811}{3701715432} a + \frac{11322469765}{3701715432} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13043.728755 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2:C_2$ (as 20T96):
| A solvable group of order 400 |
| The 16 conjugacy class representatives for $D_5\wr C_2:C_2$ |
| Character table for $D_5\wr C_2:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{12})\), 10.0.112960521216.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 389 | Data not computed | ||||||