Normalized defining polynomial
\( x^{20} - 11 x^{18} + 56 x^{16} - 150 x^{14} + 146 x^{12} + 174 x^{10} - 199 x^{8} - 1235 x^{6} + 2266 x^{4} - 396 x^{2} + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1144556201520286695842381824=2^{20}\cdot 127^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{12} + \frac{1}{9} a^{8} + \frac{2}{9} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{13} + \frac{1}{9} a^{9} + \frac{2}{9} a^{5} + \frac{1}{9} a^{3}$, $\frac{1}{945} a^{16} - \frac{2}{63} a^{14} - \frac{17}{189} a^{12} + \frac{23}{189} a^{10} + \frac{121}{945} a^{8} + \frac{43}{189} a^{6} - \frac{5}{21} a^{4} - \frac{40}{189} a^{2} - \frac{31}{105}$, $\frac{1}{2835} a^{17} - \frac{1}{21} a^{15} + \frac{67}{567} a^{13} + \frac{86}{567} a^{11} + \frac{331}{2835} a^{9} - \frac{83}{567} a^{7} + \frac{34}{189} a^{5} - \frac{61}{567} a^{3} - \frac{31}{315} a$, $\frac{1}{825668235} a^{18} - \frac{4012}{18348183} a^{16} + \frac{218074}{165133647} a^{14} + \frac{19625387}{165133647} a^{12} + \frac{124909441}{825668235} a^{10} - \frac{746282}{165133647} a^{8} - \frac{2420522}{55044549} a^{6} - \frac{22973155}{165133647} a^{4} - \frac{27868051}{91740915} a^{2} - \frac{556975}{2038687}$, $\frac{1}{825668235} a^{19} + \frac{110701}{825668235} a^{17} - \frac{7645433}{165133647} a^{15} - \frac{1767335}{18348183} a^{13} - \frac{25079674}{825668235} a^{11} + \frac{30889787}{275222745} a^{9} + \frac{23609980}{165133647} a^{7} - \frac{48311122}{165133647} a^{5} + \frac{210804526}{825668235} a^{3} - \frac{3512041}{91740915} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{559736}{117952605} a^{19} + \frac{6342562}{117952605} a^{17} - \frac{6512810}{23590521} a^{15} + \frac{646922}{873723} a^{13} - \frac{80454631}{117952605} a^{11} - \frac{41464861}{39317535} a^{9} + \frac{27887230}{23590521} a^{7} + \frac{155362433}{23590521} a^{5} - \frac{1373822891}{117952605} a^{3} - \frac{681937}{13105845} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 881125.850637 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-127}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{127}) \), \(\Q(i, \sqrt{127})\), 5.1.16129.1 x5, 10.0.33038369407.1, 10.0.266388112384.4 x5, 10.2.33831290272768.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $127$ | 127.4.2.1 | $x^{4} + 635 x^{2} + 145161$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 127.4.2.1 | $x^{4} + 635 x^{2} + 145161$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 127.4.2.1 | $x^{4} + 635 x^{2} + 145161$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 127.4.2.1 | $x^{4} + 635 x^{2} + 145161$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 127.4.2.1 | $x^{4} + 635 x^{2} + 145161$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |