Normalized defining polynomial
\( x^{20} - 6 x^{18} - 16 x^{16} - 362 x^{14} + 581 x^{12} + 14130 x^{10} + 40115 x^{8} + 22002 x^{6} + 302910 x^{4} + 65196 x^{2} + 19881 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1136304317594669299036027795688914944=2^{32}\cdot 3^{6}\cdot 881^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 881$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{12} + \frac{1}{3} a^{8} - \frac{1}{6} a^{6} - \frac{1}{3} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{13} + \frac{1}{3} a^{9} - \frac{1}{6} a^{7} - \frac{1}{3} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{24} a^{16} - \frac{1}{24} a^{12} + \frac{1}{6} a^{10} + \frac{1}{12} a^{8} - \frac{1}{4} a^{6} + \frac{5}{24} a^{4} + \frac{1}{4} a^{2} - \frac{1}{8}$, $\frac{1}{24} a^{17} - \frac{1}{24} a^{13} + \frac{1}{6} a^{11} + \frac{1}{12} a^{9} - \frac{1}{4} a^{7} + \frac{5}{24} a^{5} + \frac{1}{4} a^{3} - \frac{1}{8} a$, $\frac{1}{3680119431789370339579464} a^{18} + \frac{3904594451789924542474}{460014928973671292447433} a^{16} + \frac{86925776116128383195153}{3680119431789370339579464} a^{14} + \frac{330757802649126792028303}{1840059715894685169789732} a^{12} - \frac{588404714820828166979131}{1840059715894685169789732} a^{10} - \frac{539894670696158051167651}{1840059715894685169789732} a^{8} + \frac{801675071311694235263801}{3680119431789370339579464} a^{6} - \frac{769086971387558491230181}{1840059715894685169789732} a^{4} - \frac{118061034041823559772227}{1226706477263123446526488} a^{2} + \frac{117667092173289815929677}{613353238631561723263244}$, $\frac{1}{345931226588200811920469616} a^{19} - \frac{1}{7360238863578740679158928} a^{18} - \frac{2575514508569817927528995}{345931226588200811920469616} a^{17} + \frac{40700518014523678158673}{2453412954526246893052976} a^{16} - \frac{1095505678785820364917563}{115310408862733603973489872} a^{15} + \frac{219750843199652478436469}{7360238863578740679158928} a^{14} - \frac{13598947192885556481813817}{345931226588200811920469616} a^{13} + \frac{718529181622760293285693}{7360238863578740679158928} a^{12} + \frac{10946448930199761916955889}{57655204431366801986744936} a^{11} - \frac{944978381758076141178979}{3680119431789370339579464} a^{10} - \frac{11769250364058680822332213}{28827602215683400993372468} a^{9} - \frac{266736748454537482271513}{1840059715894685169789732} a^{8} - \frac{4537375345510002087140811}{115310408862733603973489872} a^{7} - \frac{2335058167890598543421911}{7360238863578740679158928} a^{6} + \frac{68844110190196590761996887}{345931226588200811920469616} a^{5} - \frac{2601960417987924649566535}{7360238863578740679158928} a^{4} + \frac{56923790158693416703709465}{115310408862733603973489872} a^{3} + \frac{118061034041823559772227}{2453412954526246893052976} a^{2} - \frac{34879138727310329024961365}{115310408862733603973489872} a - \frac{81995874688689201043543}{2453412954526246893052976}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5948915463.14 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 90 conjugacy class representatives for t20n685 are not computed |
| Character table for t20n685 is not computed |
Intermediate fields
| 5.5.3104644.1, 10.0.1387989268809984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.50 | $x^{8} + 48$ | $4$ | $2$ | $16$ | $Z_8 : Z_8^\times$ | $[2, 2, 3, 3]^{2}$ |
| 2.12.16.9 | $x^{12} + 7 x^{10} + 4 x^{8} + 3 x^{6} - 4 x^{4} - x^{2} - 5$ | $6$ | $2$ | $16$ | $(C_6\times C_2):C_2$ | $[2, 2]_{3}^{2}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 881 | Data not computed | ||||||