Properties

Label 20.0.11347235306...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{30}\cdot 5^{10}\cdot 641^{5}$
Root discriminant $31.82$
Ramified primes $2, 5, 641$
Class number $16$ (GRH)
Class group $[16]$ (GRH)
Galois group $C_2\times D_5\wr C_2$ (as 20T92)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![656384, 0, 1142784, 0, 903168, 0, 417024, 0, 100224, 0, 1696, 0, -4464, 0, -720, 0, 12, 0, 12, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 12*x^18 + 12*x^16 - 720*x^14 - 4464*x^12 + 1696*x^10 + 100224*x^8 + 417024*x^6 + 903168*x^4 + 1142784*x^2 + 656384)
 
gp: K = bnfinit(x^20 + 12*x^18 + 12*x^16 - 720*x^14 - 4464*x^12 + 1696*x^10 + 100224*x^8 + 417024*x^6 + 903168*x^4 + 1142784*x^2 + 656384, 1)
 

Normalized defining polynomial

\( x^{20} + 12 x^{18} + 12 x^{16} - 720 x^{14} - 4464 x^{12} + 1696 x^{10} + 100224 x^{8} + 417024 x^{6} + 903168 x^{4} + 1142784 x^{2} + 656384 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1134723530638764277760000000000=2^{30}\cdot 5^{10}\cdot 641^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 641$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{9416875200209408} a^{18} - \frac{3759538343205}{2354218800052352} a^{16} - \frac{1837967127623}{2354218800052352} a^{14} - \frac{1888662143227}{294277350006544} a^{12} + \frac{797632747889}{73569337501636} a^{10} + \frac{1292272260615}{294277350006544} a^{8} - \frac{847968310211}{73569337501636} a^{6} - \frac{840166169899}{36784668750818} a^{4} + \frac{4083950735725}{36784668750818} a^{2} + \frac{5980226995165}{18392334375409}$, $\frac{1}{9416875200209408} a^{19} - \frac{3759538343205}{2354218800052352} a^{17} - \frac{1837967127623}{2354218800052352} a^{15} - \frac{1888662143227}{294277350006544} a^{13} + \frac{797632747889}{73569337501636} a^{11} + \frac{1292272260615}{294277350006544} a^{9} - \frac{847968310211}{73569337501636} a^{7} - \frac{840166169899}{36784668750818} a^{5} + \frac{4083950735725}{36784668750818} a^{3} + \frac{5980226995165}{18392334375409} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{16}$, which has order $16$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 282072.784916 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times D_5\wr C_2$ (as 20T92):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 400
The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$
Character table for $C_2\times D_5\wr C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.0.1025600.5, 10.2.1284003125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
641Data not computed