Normalized defining polynomial
\( x^{20} + 44 x^{18} + 546 x^{16} + 2906 x^{14} + 7573 x^{12} + 10341 x^{10} + 7573 x^{8} + 2906 x^{6} + 546 x^{4} + 44 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(112731072674656014761673622552576=2^{20}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{1}{9} a^{6} - \frac{2}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{1}{9} a^{7} - \frac{2}{9} a^{3} + \frac{1}{9} a$, $\frac{1}{27} a^{14} - \frac{4}{27} a^{10} - \frac{4}{27} a^{8} + \frac{4}{27} a^{6} - \frac{5}{27} a^{4} + \frac{1}{3} a^{2} - \frac{1}{27}$, $\frac{1}{27} a^{15} - \frac{4}{27} a^{11} - \frac{4}{27} a^{9} + \frac{4}{27} a^{7} - \frac{5}{27} a^{5} + \frac{1}{3} a^{3} - \frac{1}{27} a$, $\frac{1}{4293} a^{16} - \frac{25}{4293} a^{14} + \frac{203}{4293} a^{12} + \frac{230}{1431} a^{10} + \frac{464}{4293} a^{8} - \frac{35}{1431} a^{6} - \frac{910}{4293} a^{4} - \frac{820}{4293} a^{2} - \frac{794}{4293}$, $\frac{1}{4293} a^{17} - \frac{25}{4293} a^{15} + \frac{203}{4293} a^{13} + \frac{230}{1431} a^{11} + \frac{464}{4293} a^{9} - \frac{35}{1431} a^{7} - \frac{910}{4293} a^{5} - \frac{820}{4293} a^{3} - \frac{794}{4293} a$, $\frac{1}{4293} a^{18} + \frac{55}{4293} a^{14} + \frac{41}{4293} a^{12} + \frac{65}{4293} a^{10} - \frac{430}{4293} a^{8} - \frac{196}{4293} a^{6} - \frac{197}{4293} a^{4} + \frac{19}{477} a^{2} + \frac{1138}{4293}$, $\frac{1}{4293} a^{19} + \frac{55}{4293} a^{15} + \frac{41}{4293} a^{13} + \frac{65}{4293} a^{11} - \frac{430}{4293} a^{9} - \frac{196}{4293} a^{7} - \frac{197}{4293} a^{5} + \frac{19}{477} a^{3} + \frac{1138}{4293} a$
Class group and class number
$C_{5}\times C_{50}$, which has order $250$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{229}{477} a^{19} + \frac{3358}{159} a^{17} + \frac{124961}{477} a^{15} + \frac{221672}{159} a^{13} + \frac{1735481}{477} a^{11} + \frac{2383627}{477} a^{9} + \frac{1766660}{477} a^{7} + \frac{680474}{477} a^{5} + \frac{117499}{477} a^{3} + \frac{5941}{477} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795087.603907 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-401}) \), \(\Q(i, \sqrt{401})\), 5.5.160801.1 x5, 10.10.10368641602001.1, 10.0.26477528679424.1 x5, 10.0.10617489000449024.3 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 401 | Data not computed | ||||||