Normalized defining polynomial
\( x^{20} - 4 x^{19} + 20 x^{18} - 60 x^{17} + 170 x^{16} - 371 x^{15} + 715 x^{14} - 1078 x^{13} + 1399 x^{12} - 1034 x^{11} + 1299 x^{10} + 2068 x^{9} + 5596 x^{8} + 8624 x^{7} + 11440 x^{6} + 11872 x^{5} + 10880 x^{4} + 7680 x^{3} + 5120 x^{2} + 2048 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1124462134942353310118447265625=5^{10}\cdot 11^{16}\cdot 1583^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 1583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} - \frac{3}{8} a^{8} - \frac{1}{8} a^{7} + \frac{1}{4} a^{6} + \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{14} - \frac{1}{4} a^{11} - \frac{3}{8} a^{10} + \frac{5}{16} a^{9} + \frac{7}{16} a^{8} + \frac{1}{8} a^{7} - \frac{5}{16} a^{6} + \frac{1}{8} a^{5} - \frac{1}{16} a^{4} - \frac{1}{2} a$, $\frac{1}{352} a^{15} - \frac{1}{44} a^{14} - \frac{1}{22} a^{13} + \frac{9}{88} a^{12} + \frac{21}{176} a^{11} + \frac{117}{352} a^{10} + \frac{13}{32} a^{9} - \frac{67}{176} a^{8} + \frac{115}{352} a^{7} - \frac{5}{16} a^{6} - \frac{81}{352} a^{5} + \frac{3}{22} a^{4} + \frac{9}{22} a^{3} - \frac{3}{22} a^{2} - \frac{4}{11} a - \frac{1}{11}$, $\frac{1}{704} a^{16} + \frac{1}{88} a^{14} - \frac{1}{176} a^{13} - \frac{1}{32} a^{12} + \frac{101}{704} a^{11} + \frac{199}{704} a^{10} + \frac{109}{352} a^{9} + \frac{9}{64} a^{8} - \frac{79}{352} a^{7} + \frac{183}{704} a^{6} + \frac{3}{11} a^{5} + \frac{3}{8} a^{4} - \frac{5}{88} a^{3} + \frac{3}{11} a^{2} - \frac{4}{11}$, $\frac{1}{1408} a^{17} - \frac{7}{352} a^{14} - \frac{35}{704} a^{13} + \frac{15}{128} a^{12} + \frac{215}{1408} a^{11} + \frac{257}{704} a^{10} - \frac{39}{128} a^{9} + \frac{61}{704} a^{8} + \frac{29}{128} a^{7} + \frac{13}{176} a^{6} + \frac{13}{88} a^{5} - \frac{21}{88} a^{4} - \frac{5}{88} a^{3} - \frac{21}{44} a^{2} + \frac{1}{22} a + \frac{2}{11}$, $\frac{1}{6387037834496} a^{18} - \frac{678809227}{3193518917248} a^{17} - \frac{13070053}{99797466164} a^{16} + \frac{970007751}{1596759458624} a^{15} - \frac{8544918637}{290319901568} a^{14} + \frac{265963632425}{6387037834496} a^{13} - \frac{62667930565}{580639803136} a^{12} + \frac{42248074367}{798379729312} a^{11} + \frac{646907335551}{6387037834496} a^{10} - \frac{3252967317}{199594932328} a^{9} + \frac{1334941312627}{6387037834496} a^{8} + \frac{977629712595}{3193518917248} a^{7} - \frac{139570905211}{399189864656} a^{6} - \frac{32676868903}{72579975392} a^{5} + \frac{137823375773}{399189864656} a^{4} - \frac{11996838613}{99797466164} a^{3} + \frac{21249601471}{49898733082} a^{2} - \frac{8161991147}{24949366541} a + \frac{6804372691}{24949366541}$, $\frac{1}{855863069822464} a^{19} - \frac{3}{106982883727808} a^{18} + \frac{35139645163}{213965767455616} a^{17} - \frac{84953237291}{213965767455616} a^{16} + \frac{123668151285}{427931534911232} a^{15} - \frac{6339237311419}{855863069822464} a^{14} + \frac{30386071198935}{855863069822464} a^{13} - \frac{26479114475925}{427931534911232} a^{12} + \frac{199336009536743}{855863069822464} a^{11} - \frac{182409703994411}{427931534911232} a^{10} + \frac{29114122733481}{77805733620224} a^{9} + \frac{9524104860697}{106982883727808} a^{8} + \frac{8845165422071}{19451433405056} a^{7} - \frac{313285936587}{1162857431824} a^{6} + \frac{6131531930459}{26745720931952} a^{5} - \frac{3849451445879}{13372860465976} a^{4} - \frac{5045058786959}{13372860465976} a^{3} - \frac{250437950373}{1671607558247} a^{2} - \frac{232845434073}{3343215116494} a - \frac{538903061177}{1671607558247}$
Class group and class number
$C_{33}$, which has order $33$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T86):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.339330108623.1, 10.0.1060406589446875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 1583 | Data not computed | ||||||