Normalized defining polynomial
\( x^{20} - 2 x^{19} - 97 x^{18} + 190 x^{17} + 3905 x^{16} - 6398 x^{15} - 78390 x^{14} + 57086 x^{13} + 904237 x^{12} + 388520 x^{11} - 3987980 x^{10} - 10923148 x^{9} - 11917972 x^{8} + 23685348 x^{7} + 188740539 x^{6} + 373408974 x^{5} + 969501555 x^{4} + 973121202 x^{3} + 1685592342 x^{2} + 828313128 x + 1088922609 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1123852547182106083132474859412520960000000000=2^{30}\cdot 5^{10}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $178.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1640=2^{3}\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1640}(1,·)$, $\chi_{1640}(1451,·)$, $\chi_{1640}(1089,·)$, $\chi_{1640}(961,·)$, $\chi_{1640}(201,·)$, $\chi_{1640}(1419,·)$, $\chi_{1640}(1281,·)$, $\chi_{1640}(209,·)$, $\chi_{1640}(409,·)$, $\chi_{1640}(819,·)$, $\chi_{1640}(1371,·)$, $\chi_{1640}(1179,·)$, $\chi_{1640}(1499,·)$, $\chi_{1640}(611,·)$, $\chi_{1640}(1041,·)$, $\chi_{1640}(619,·)$, $\chi_{1640}(411,·)$, $\chi_{1640}(1009,·)$, $\chi_{1640}(51,·)$, $\chi_{1640}(769,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{27} a^{8} - \frac{1}{27} a^{7} + \frac{1}{27} a^{6} + \frac{2}{27} a^{5} + \frac{4}{27} a^{4} - \frac{1}{27} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{9} - \frac{1}{27} a^{7} + \frac{1}{27} a^{5} - \frac{10}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{81} a^{10} - \frac{1}{27} a^{7} - \frac{1}{27} a^{6} + \frac{2}{27} a^{5} - \frac{7}{81} a^{4} - \frac{1}{27} a^{3} - \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{11} + \frac{1}{27} a^{7} + \frac{8}{81} a^{5} - \frac{4}{27} a^{3}$, $\frac{1}{243} a^{12} - \frac{1}{243} a^{10} - \frac{1}{81} a^{8} - \frac{4}{243} a^{6} - \frac{11}{243} a^{4} + \frac{2}{27} a^{2}$, $\frac{1}{243} a^{13} - \frac{1}{243} a^{11} - \frac{13}{243} a^{7} - \frac{2}{243} a^{5} - \frac{4}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{2187} a^{14} - \frac{1}{2187} a^{13} + \frac{2}{2187} a^{12} + \frac{13}{2187} a^{11} + \frac{1}{243} a^{10} + \frac{1}{729} a^{9} - \frac{40}{2187} a^{8} + \frac{76}{2187} a^{7} - \frac{14}{2187} a^{6} + \frac{197}{2187} a^{5} - \frac{49}{729} a^{4} + \frac{13}{243} a^{3} - \frac{26}{81} a^{2} + \frac{2}{9} a$, $\frac{1}{2187} a^{15} + \frac{1}{2187} a^{13} - \frac{1}{729} a^{12} - \frac{5}{2187} a^{11} + \frac{1}{729} a^{10} - \frac{10}{2187} a^{9} + \frac{1}{243} a^{8} + \frac{62}{2187} a^{7} + \frac{4}{729} a^{6} + \frac{320}{2187} a^{5} - \frac{70}{729} a^{4} + \frac{40}{243} a^{3} - \frac{20}{81} a^{2}$, $\frac{1}{2187} a^{16} - \frac{2}{2187} a^{13} + \frac{2}{2187} a^{12} - \frac{10}{2187} a^{11} - \frac{1}{2187} a^{10} + \frac{2}{729} a^{9} - \frac{2}{729} a^{8} - \frac{64}{2187} a^{7} - \frac{107}{2187} a^{6} + \frac{322}{2187} a^{5} - \frac{116}{729} a^{4} + \frac{8}{243} a^{3} - \frac{4}{81} a^{2} + \frac{1}{9} a$, $\frac{1}{19683} a^{17} - \frac{1}{19683} a^{16} + \frac{1}{19683} a^{15} + \frac{2}{19683} a^{14} - \frac{35}{19683} a^{13} + \frac{20}{19683} a^{12} - \frac{70}{19683} a^{11} - \frac{89}{19683} a^{10} - \frac{10}{19683} a^{9} + \frac{196}{19683} a^{8} + \frac{872}{19683} a^{7} + \frac{1087}{19683} a^{6} + \frac{818}{6561} a^{5} - \frac{29}{243} a^{4} + \frac{79}{729} a^{3} - \frac{70}{243} a^{2} + \frac{2}{27} a$, $\frac{1}{62769087} a^{18} + \frac{136}{62769087} a^{17} + \frac{9656}{62769087} a^{16} + \frac{4630}{62769087} a^{15} - \frac{40}{62769087} a^{14} + \frac{78745}{62769087} a^{13} + \frac{3281}{20923029} a^{12} - \frac{117319}{62769087} a^{11} + \frac{247114}{62769087} a^{10} - \frac{127408}{62769087} a^{9} + \frac{64534}{62769087} a^{8} - \frac{252949}{62769087} a^{7} - \frac{589174}{62769087} a^{6} - \frac{3048449}{20923029} a^{5} + \frac{125603}{774927} a^{4} + \frac{328847}{2324781} a^{3} - \frac{116939}{774927} a^{2} - \frac{2429}{86103} a + \frac{319}{1063}$, $\frac{1}{4275103289165909357953014980145249107935024649619} a^{19} + \frac{1140102884543004192461727803808523595203}{4275103289165909357953014980145249107935024649619} a^{18} - \frac{20742642917841036020771274202974047099972710}{4275103289165909357953014980145249107935024649619} a^{17} - \frac{744787809156685014316129254805721605361932775}{4275103289165909357953014980145249107935024649619} a^{16} + \frac{134402311642436985487052547232146336355114997}{4275103289165909357953014980145249107935024649619} a^{15} + \frac{576672978730901409138392791892990897081075035}{4275103289165909357953014980145249107935024649619} a^{14} - \frac{747711760452708083140047289678043298556467188}{1425034429721969785984338326715083035978341549873} a^{13} - \frac{4067587025160425012118679305346298850057905995}{4275103289165909357953014980145249107935024649619} a^{12} + \frac{26149530660270566968494455251337774755698827281}{4275103289165909357953014980145249107935024649619} a^{11} - \frac{24551950544909435250391838385467830029143050807}{4275103289165909357953014980145249107935024649619} a^{10} - \frac{16512581533394706922146409629326802538294939031}{4275103289165909357953014980145249107935024649619} a^{9} - \frac{14959337172464377278412159275715596106616565622}{4275103289165909357953014980145249107935024649619} a^{8} - \frac{219896925861079790076287922398828084633005234633}{4275103289165909357953014980145249107935024649619} a^{7} - \frac{13445690028744854096970019382426024651867806705}{475011476573989928661446108905027678659447183291} a^{6} - \frac{41102996365263102719482499289403241448243807401}{475011476573989928661446108905027678659447183291} a^{5} - \frac{5221480890652710886086617302409880971693639899}{158337158857996642887148702968342559553149061097} a^{4} + \frac{1138509023768029672295142278061178678593861526}{17593017650888515876349855885371395505905451233} a^{3} + \frac{2531095188259935835049893624570814793154049953}{17593017650888515876349855885371395505905451233} a^{2} + \frac{463568862820119384866265132352827894399612190}{1954779738987612875149983987263488389545050137} a + \frac{7095907532487756112302562566546850394004981}{24133083197377936730246715892141831969691977}$
Class group and class number
$C_{2}\times C_{42828040}$, which has order $85656080$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3541438824.6395073 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{205}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-410}) \), \(\Q(\sqrt{-2}, \sqrt{205})\), 5.5.2825761.1, 10.10.1023068544981128125.1, 10.0.261650029907836928.1, 10.0.33523910081941606400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{20}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $41$ | 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |