Normalized defining polynomial
\( x^{20} + 37 x^{18} + 532 x^{16} + 3825 x^{14} + 14809 x^{12} + 30961 x^{10} + 33577 x^{8} + 18297 x^{6} + 4576 x^{4} + 385 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(112385254718210608313247485941252096=2^{20}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(164=2^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{164}(1,·)$, $\chi_{164}(133,·)$, $\chi_{164}(139,·)$, $\chi_{164}(141,·)$, $\chi_{164}(81,·)$, $\chi_{164}(83,·)$, $\chi_{164}(23,·)$, $\chi_{164}(25,·)$, $\chi_{164}(31,·)$, $\chi_{164}(163,·)$, $\chi_{164}(37,·)$, $\chi_{164}(105,·)$, $\chi_{164}(107,·)$, $\chi_{164}(45,·)$, $\chi_{164}(113,·)$, $\chi_{164}(51,·)$, $\chi_{164}(119,·)$, $\chi_{164}(57,·)$, $\chi_{164}(59,·)$, $\chi_{164}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{7}$, $\frac{1}{747} a^{16} - \frac{7}{249} a^{14} - \frac{29}{249} a^{12} - \frac{37}{249} a^{10} + \frac{43}{747} a^{8} + \frac{19}{249} a^{6} - \frac{55}{249} a^{4} - \frac{50}{249} a^{2} - \frac{98}{747}$, $\frac{1}{747} a^{17} - \frac{7}{249} a^{15} - \frac{29}{249} a^{13} - \frac{37}{249} a^{11} + \frac{43}{747} a^{9} + \frac{19}{249} a^{7} - \frac{55}{249} a^{5} - \frac{50}{249} a^{3} - \frac{98}{747} a$, $\frac{1}{91327473} a^{18} + \frac{21173}{91327473} a^{16} - \frac{3041435}{30442491} a^{14} + \frac{624610}{30442491} a^{12} - \frac{395102}{91327473} a^{10} - \frac{9602377}{91327473} a^{8} + \frac{11574431}{30442491} a^{6} + \frac{11469536}{30442491} a^{4} - \frac{10766726}{91327473} a^{2} - \frac{7900126}{91327473}$, $\frac{1}{91327473} a^{19} + \frac{21173}{91327473} a^{17} - \frac{3041435}{30442491} a^{15} + \frac{624610}{30442491} a^{13} - \frac{395102}{91327473} a^{11} - \frac{9602377}{91327473} a^{9} + \frac{11574431}{30442491} a^{7} + \frac{11469536}{30442491} a^{5} - \frac{10766726}{91327473} a^{3} - \frac{7900126}{91327473} a$
Class group and class number
$C_{1420}$, which has order $1420$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3581236}{91327473} a^{19} + \frac{132884525}{91327473} a^{17} + \frac{639634783}{30442491} a^{15} + \frac{4629305641}{30442491} a^{13} + \frac{54320312113}{91327473} a^{11} + \frac{115391121083}{91327473} a^{9} + \frac{42724490132}{30442491} a^{7} + \frac{23915907788}{30442491} a^{5} + \frac{18630636445}{91327473} a^{3} + \frac{1812944645}{91327473} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5104264.63655 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-41}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{41})\), 5.5.2825761.1, 10.0.335239100819416064.1, 10.10.327381934393961.1, 10.0.8176563434619904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $41$ | 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.1 | $x^{10} - 41$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |