Normalized defining polynomial
\( x^{20} - 4 x^{19} + 15 x^{18} - 41 x^{17} + 99 x^{16} - 199 x^{15} + 349 x^{14} - 532 x^{13} + 722 x^{12} - 848 x^{11} + 908 x^{10} - 806 x^{9} + 752 x^{8} - 558 x^{7} + 514 x^{6} - 322 x^{5} + 297 x^{4} - 172 x^{3} + 160 x^{2} - 40 x + 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(112301523477117950439453125=5^{15}\cdot 60662149^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 60662149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} + \frac{1}{4} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{927845029981902181528} a^{19} + \frac{1358904378208313557}{115980628747737772691} a^{18} - \frac{228678946884137306693}{927845029981902181528} a^{17} - \frac{350670445972130391685}{927845029981902181528} a^{16} - \frac{201169921862369368725}{927845029981902181528} a^{15} + \frac{279083329924400214977}{927845029981902181528} a^{14} + \frac{77511082571503953037}{927845029981902181528} a^{13} + \frac{65830123838274309323}{231961257495475545382} a^{12} + \frac{44807937755023945843}{463922514990951090764} a^{11} - \frac{14081012088322120319}{115980628747737772691} a^{10} + \frac{115260672655328913917}{231961257495475545382} a^{9} + \frac{207303280174819813577}{463922514990951090764} a^{8} + \frac{17782011700928234419}{115980628747737772691} a^{7} + \frac{174687293668096746005}{463922514990951090764} a^{6} + \frac{3624829636360458001}{463922514990951090764} a^{5} + \frac{121174719607637151451}{463922514990951090764} a^{4} + \frac{373334533658927887561}{927845029981902181528} a^{3} + \frac{29601742789259551419}{115980628747737772691} a^{2} + \frac{92605649223106940141}{231961257495475545382} a - \frac{55265434337172998926}{115980628747737772691}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{23758269720454200313}{927845029981902181528} a^{19} - \frac{19727170792655448601}{231961257495475545382} a^{18} + \frac{298908664819677718983}{927845029981902181528} a^{17} - \frac{759331132788090166505}{927845029981902181528} a^{16} + \frac{1786371607278417965267}{927845029981902181528} a^{15} - \frac{3396230831720009486687}{927845029981902181528} a^{14} + \frac{5697308346471386968093}{927845029981902181528} a^{13} - \frac{2060957259615357644725}{231961257495475545382} a^{12} + \frac{5338969332289377406885}{463922514990951090764} a^{11} - \frac{1460372954756311061056}{115980628747737772691} a^{10} + \frac{3034046436742528462929}{231961257495475545382} a^{9} - \frac{4663002903479006791823}{463922514990951090764} a^{8} + \frac{1222719669959981957202}{115980628747737772691} a^{7} - \frac{2583753456758724502843}{463922514990951090764} a^{6} + \frac{3237440335185907297793}{463922514990951090764} a^{5} - \frac{867239400920002438461}{463922514990951090764} a^{4} + \frac{3017532106499784457889}{927845029981902181528} a^{3} - \frac{260523268758770467827}{231961257495475545382} a^{2} + \frac{241645083142882246752}{115980628747737772691} a + \frac{62820922550134507054}{115980628747737772691} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 196321.686407 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 70 conjugacy class representatives for t20n654 are not computed |
| Character table for t20n654 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.6.189569215625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 60662149 | Data not computed | ||||||