Properties

Label 20.0.11208759391...4969.1
Degree $20$
Signature $[0, 10]$
Discriminant $11^{18}\cdot 17^{10}$
Root discriminant $35.68$
Ramified primes $11, 17$
Class number $41$ (GRH)
Class group $[41]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1048576, 262144, 327680, 147456, 118784, 66560, 46336, 28224, 18640, 11716, 7589, -2929, 1165, -441, 181, -65, 29, -9, 5, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 + 5*x^18 - 9*x^17 + 29*x^16 - 65*x^15 + 181*x^14 - 441*x^13 + 1165*x^12 - 2929*x^11 + 7589*x^10 + 11716*x^9 + 18640*x^8 + 28224*x^7 + 46336*x^6 + 66560*x^5 + 118784*x^4 + 147456*x^3 + 327680*x^2 + 262144*x + 1048576)
 
gp: K = bnfinit(x^20 - x^19 + 5*x^18 - 9*x^17 + 29*x^16 - 65*x^15 + 181*x^14 - 441*x^13 + 1165*x^12 - 2929*x^11 + 7589*x^10 + 11716*x^9 + 18640*x^8 + 28224*x^7 + 46336*x^6 + 66560*x^5 + 118784*x^4 + 147456*x^3 + 327680*x^2 + 262144*x + 1048576, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} + 5 x^{18} - 9 x^{17} + 29 x^{16} - 65 x^{15} + 181 x^{14} - 441 x^{13} + 1165 x^{12} - 2929 x^{11} + 7589 x^{10} + 11716 x^{9} + 18640 x^{8} + 28224 x^{7} + 46336 x^{6} + 66560 x^{5} + 118784 x^{4} + 147456 x^{3} + 327680 x^{2} + 262144 x + 1048576 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11208759391001129236841977834969=11^{18}\cdot 17^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $35.68$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(187=11\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{187}(1,·)$, $\chi_{187}(67,·)$, $\chi_{187}(69,·)$, $\chi_{187}(135,·)$, $\chi_{187}(137,·)$, $\chi_{187}(16,·)$, $\chi_{187}(18,·)$, $\chi_{187}(84,·)$, $\chi_{187}(86,·)$, $\chi_{187}(152,·)$, $\chi_{187}(35,·)$, $\chi_{187}(101,·)$, $\chi_{187}(103,·)$, $\chi_{187}(169,·)$, $\chi_{187}(171,·)$, $\chi_{187}(50,·)$, $\chi_{187}(52,·)$, $\chi_{187}(118,·)$, $\chi_{187}(120,·)$, $\chi_{187}(186,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{30356} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{2929}{7589}$, $\frac{1}{121424} a^{12} - \frac{1}{121424} a^{11} + \frac{1}{16} a^{10} - \frac{5}{16} a^{9} - \frac{7}{16} a^{8} + \frac{3}{16} a^{7} + \frac{1}{16} a^{6} - \frac{5}{16} a^{5} - \frac{7}{16} a^{4} + \frac{3}{16} a^{3} + \frac{1}{16} a^{2} + \frac{2929}{30356} a + \frac{1165}{7589}$, $\frac{1}{485696} a^{13} - \frac{1}{485696} a^{12} + \frac{5}{485696} a^{11} - \frac{21}{64} a^{10} + \frac{25}{64} a^{9} + \frac{19}{64} a^{8} + \frac{17}{64} a^{7} - \frac{5}{64} a^{6} + \frac{9}{64} a^{5} - \frac{29}{64} a^{4} + \frac{1}{64} a^{3} + \frac{2929}{121424} a^{2} + \frac{1165}{30356} a + \frac{441}{7589}$, $\frac{1}{1942784} a^{14} - \frac{1}{1942784} a^{13} + \frac{5}{1942784} a^{12} - \frac{9}{1942784} a^{11} + \frac{25}{256} a^{10} - \frac{109}{256} a^{9} - \frac{47}{256} a^{8} + \frac{123}{256} a^{7} - \frac{55}{256} a^{6} + \frac{35}{256} a^{5} + \frac{1}{256} a^{4} + \frac{2929}{485696} a^{3} + \frac{1165}{121424} a^{2} + \frac{441}{30356} a + \frac{181}{7589}$, $\frac{1}{7771136} a^{15} - \frac{1}{7771136} a^{14} + \frac{5}{7771136} a^{13} - \frac{9}{7771136} a^{12} + \frac{29}{7771136} a^{11} - \frac{365}{1024} a^{10} + \frac{465}{1024} a^{9} + \frac{123}{1024} a^{8} - \frac{311}{1024} a^{7} - \frac{221}{1024} a^{6} + \frac{1}{1024} a^{5} + \frac{2929}{1942784} a^{4} + \frac{1165}{485696} a^{3} + \frac{441}{121424} a^{2} + \frac{181}{30356} a + \frac{65}{7589}$, $\frac{1}{31084544} a^{16} - \frac{1}{31084544} a^{15} + \frac{5}{31084544} a^{14} - \frac{9}{31084544} a^{13} + \frac{29}{31084544} a^{12} - \frac{65}{31084544} a^{11} - \frac{1583}{4096} a^{10} + \frac{123}{4096} a^{9} + \frac{1737}{4096} a^{8} - \frac{1245}{4096} a^{7} + \frac{1}{4096} a^{6} + \frac{2929}{7771136} a^{5} + \frac{1165}{1942784} a^{4} + \frac{441}{485696} a^{3} + \frac{181}{121424} a^{2} + \frac{65}{30356} a + \frac{29}{7589}$, $\frac{1}{124338176} a^{17} - \frac{1}{124338176} a^{16} + \frac{5}{124338176} a^{15} - \frac{9}{124338176} a^{14} + \frac{29}{124338176} a^{13} - \frac{65}{124338176} a^{12} + \frac{181}{124338176} a^{11} + \frac{123}{16384} a^{10} - \frac{6455}{16384} a^{9} + \frac{6947}{16384} a^{8} + \frac{1}{16384} a^{7} + \frac{2929}{31084544} a^{6} + \frac{1165}{7771136} a^{5} + \frac{441}{1942784} a^{4} + \frac{181}{485696} a^{3} + \frac{65}{121424} a^{2} + \frac{29}{30356} a + \frac{9}{7589}$, $\frac{1}{497352704} a^{18} - \frac{1}{497352704} a^{17} + \frac{5}{497352704} a^{16} - \frac{9}{497352704} a^{15} + \frac{29}{497352704} a^{14} - \frac{65}{497352704} a^{13} + \frac{181}{497352704} a^{12} - \frac{441}{497352704} a^{11} + \frac{26313}{65536} a^{10} - \frac{25821}{65536} a^{9} + \frac{1}{65536} a^{8} + \frac{2929}{124338176} a^{7} + \frac{1165}{31084544} a^{6} + \frac{441}{7771136} a^{5} + \frac{181}{1942784} a^{4} + \frac{65}{485696} a^{3} + \frac{29}{121424} a^{2} + \frac{9}{30356} a + \frac{5}{7589}$, $\frac{1}{1989410816} a^{19} - \frac{1}{1989410816} a^{18} + \frac{5}{1989410816} a^{17} - \frac{9}{1989410816} a^{16} + \frac{29}{1989410816} a^{15} - \frac{65}{1989410816} a^{14} + \frac{181}{1989410816} a^{13} - \frac{441}{1989410816} a^{12} + \frac{1165}{1989410816} a^{11} + \frac{105251}{262144} a^{10} + \frac{1}{262144} a^{9} + \frac{2929}{497352704} a^{8} + \frac{1165}{124338176} a^{7} + \frac{441}{31084544} a^{6} + \frac{181}{7771136} a^{5} + \frac{65}{1942784} a^{4} + \frac{29}{485696} a^{3} + \frac{9}{121424} a^{2} + \frac{5}{30356} a + \frac{1}{7589}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{41}$, which has order $41$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1}{121424} a^{13} - \frac{49661}{121424} a^{2} \) (order $22$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3338983.62101 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-187}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-11}, \sqrt{17})\), \(\Q(\zeta_{11})^+\), 10.0.3347948534700187.1, \(\Q(\zeta_{11})\), 10.10.304358957700017.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
17Data not computed